
Semiconductor nanostructures enabled by aerosol technology
Martin H. Magnusson, B. Jonas Ohlsson, Mikael T. Björk, Kimberly A. Dick, Magnus T. Borgström, Knut Deppert, Lars Samuelson
Front. Phys. ›› 2014, Vol. 9 ›› Issue (3) : 398-418.
Semiconductor nanostructures enabled by aerosol technology
Aerosol technology provides efficient methods for producing nanoparticles with well-controlled composition and size distribution. This review provides an overview of methods and results obtained by using aerosol technology for producing nanostructures for a variety of applications in semiconductor physics and device technology. Examples are given from: production of metal and metal alloy particles; semiconductor nanoparticles; semiconductor nanowires, grown both in the aerosol phase and on substrates; physics studies based on individual aerosol-generated devices; and large area devices based on aerosol particles.
aerosol / nanoparticle / nanowire / metal-organic vapor phase epitaxy (MOVPE) / device physics / light emitting diodes (LED) / solar cell
[1] |
R. Mueller, L. Mädler, and S. E. Pratsinis, Nanoparticle synthesis at high production rates by flame spray pyrolysis, Chem. Eng. Sci., 2003, 58(10): 1969
CrossRef
ADS
Google scholar
|
[2] |
H. G. Craighead, 10-nm resolution electron-beam lithography, J. Appl. Phys., 1984, 55(12): 4430
CrossRef
ADS
Google scholar
|
[3] |
G. M. Whitesides, J. P. Mathias, and C. T. Seto, Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures, Science, 1991, 254(5036): 1312
CrossRef
ADS
Google scholar
|
[4] |
A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media, J. Am. Chem. Soc., 1990, 112(4): 1327
CrossRef
ADS
Google scholar
|
[5] |
W. Seifert, N. Carlsson, M. Miller, M. E. Pistol, L. Samuelson, and L. R. Wallenberg, Insitu growth of quantum dot structures by the Stranski-Krastanow growth mode, Prog. Cryst. Growth Charact. Mater., 1996, 33(4): 423
CrossRef
ADS
Google scholar
|
[6] |
H. Schift, Nanoimprint lithography: An old story in modern times? Areview, J. Vac. Sci. Technol. B, 2008, 26(2): 458
CrossRef
ADS
Google scholar
|
[7] |
W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, 2012
|
[8] |
J. H. Vincent, Aerosol Sampling: Science, Standards, Instrumentation and Applications, John Wiley & Sons, 2007
CrossRef
ADS
Google scholar
|
[9] |
R. C. Flagan, History of electrical aerosol measurements, Aerosol Sci. Technol., 1998, 28(4): 301
CrossRef
ADS
Google scholar
|
[10] |
P. Kulkarni, P. A. Baron, and K. Willeke (Eds.), Aerosol Measurement: Principles, Techniques, and Applications, John Wiley & Sons, 2011
CrossRef
ADS
Google scholar
|
[11] |
S. E. Pratsinis, Flame aerosol synthesis of ceramic powders, Pror. Energy Combust. Sci., 1998, 24(3): 197
CrossRef
ADS
Google scholar
|
[12] |
M. Attoui, M. Paragano, J. Cuevas, and J. Fernandez de la Mora, Tandem DMA generation of strictly monomobile 1-3.5 nm particle standards, Aerosol Sci. Technol., 2013, 47(5): 499
CrossRef
ADS
Google scholar
|
[13] |
D. R. Chen, D. Y. H. Pui, G. W. Mulholland, and M. Fernandez, Design and testing of an aerosol/sheath inlet for high resolution measurements with a DMA, J. Aerosol Sci., 1999, 30(8): 983
CrossRef
ADS
Google scholar
|
[14] |
T. J. Krinke, H. Fissan, K. Deppert, M. H. Magnusson, and L. Samuelson, Positioning of nanometer-sized particles on flat surfaces by direct deposition from the gas phase, Appl. Phys. Lett., 2001, 78(23): 3708
CrossRef
ADS
Google scholar
|
[15] |
H. Kim, J. Kim, H. Yang, J. Suh, T. Kim, B. Han, S. Kim, D. S. Kim, P. V. Pikhitsa, and M. Choi, Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols, Nat. Nanotechnol., 2006, 1(2): 117
CrossRef
ADS
Google scholar
|
[16] |
L. Qi, P. H. McMurry, D. J. Norris, and S. L. Girshick, Micropattern deposition of colloidal semiconductor nanocrystals by aerodynamic focusing, Aerosol Sci. Technol., 2010, 44(1): 55
CrossRef
ADS
Google scholar
|
[17] |
S. H. Kim, G. W. Mulholland, and M. R. Zachariah, Understanding ion-mobility and transport properties of aerosol nanowires, J. Aerosol Sci., 2007, 38(8): 823
CrossRef
ADS
Google scholar
|
[18] |
K. Ehara, C. Hagwood, and K. J. Coakley, Novel method to classify aerosol particles according to their mass-to-charge ratio – Aerosol particle mass analyser, J. Aerosol Sci., 1996, 27(2): 217
CrossRef
ADS
Google scholar
|
[19] |
H. G. Scheibel and J. Porstendörfer, Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm, J. Aerosol Sci., 1983, 14(2): 113
CrossRef
ADS
Google scholar
|
[20] |
B. Y. H. Liu and D. Y. H. Pui, Electrical neutralization of aerosols, J. Aerosol Sci., 1974, 5(5): 465
CrossRef
ADS
Google scholar
|
[21] |
E. O. Knutson and K. T. Whitby, Aerosol classification by electric mobility: Apparatus, theory, and applications, J. Aerosol Sci., 1975, 6(6): 443
CrossRef
ADS
Google scholar
|
[22] |
M. N. A. Karlsson, K. Deppert, L. S. Karlsson, M. H. Magnusson, J. O. Malm, and N. S. Srinivasan, Compaction of agglomerates of aerosol nanoparticles: A compilation of experimental data, J. Nanopart. Res., 2005, 7(1): 43
CrossRef
ADS
Google scholar
|
[23] |
M. H. Magnusson, K. Deppert, J. O. Malm, J. O. Bovin, and L. Samuelson, Gold nanoparticles: Production, reshaping, and thermal charging, J. Nanopart. Res., 1999, 1(2): 243
CrossRef
ADS
Google scholar
|
[24] |
M. H. Magnusson, K. Deppert, and J. O. Malm, Singlecrystalline tungsten nanoparticles produced by thermal decomposition of tungsten hexacarbonyl, J. Mater. Res., 2000, 15(07): 1564
CrossRef
ADS
Google scholar
|
[25] |
M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices, Appl. Phys. Lett., 2001, 79(3): 433
CrossRef
ADS
Google scholar
|
[26] |
S. Schwyn, E. Garwin, and A. Schmidt-Ott, Aerosol generation by spark discharge, J. Aerosol Sci., 1988, 19(5): 639
CrossRef
ADS
Google scholar
|
[27] |
B. O.Meuller, M. E.Messing, D. L. J. Engberg, A. M. Jansson, L. I. M. Johansson, S. M. Norlén, N. Tureson, and K. Deppert, Review of spark discharge generators for production of nanoparticle aerosols, Aerosol Sci. Technol., 2012, 46(11): 1256
CrossRef
ADS
Google scholar
|
[28] |
N. S. Tabrizi, Q. Xu, N. M. van der Pers, and A. Schmidt-Ott, Generation of mixed metallic nanoparticles from immiscible metals by spark discharge, J. Nanopart. Res., 2010, 12(1): 247
CrossRef
ADS
Google scholar
|
[29] |
M. E. Messing, R. Westerström, B. O. Meuller, S. Blomberg, J. Gustafson, J. N. Andersen, E. Lundgren, R. van Rijn, O. Balmes, H. Bluhm, and K. Deppert, Generation of Pd model catalyst nanoparticles by spark discharge, J. Phys. Chem. C, 2010, 114(20): 9257
CrossRef
ADS
Google scholar
|
[30] |
M. E. Messing, C. R. Svensson, J. Pagels, B. O. Meuller, K. Deppert, and J. Rissler, Gas-borne particles with tunable and highly controlled characteristics for nanotoxicology studies, Nanotoxicology, 2013, 7(6): 1052
CrossRef
ADS
Google scholar
|
[31] |
T. V. Pfeiffer, P. Keijzer, and A. Schmidt-Ott, A controlled spark generator for increased nanoparticle production, Europ. Aerosol Con f., 16 Sep. 2013, Prague
|
[32] |
E. Hontañón, J. M. Palomares, M. Stein, X. Guo, R. Engeln, H. Nirschl, and F. E. Kruis, Experimental study on the transition from spark to arc discharge with respect to nanoparticle production, Europ. Aerosol Conf., 16 Sep. 2013, Prague
|
[33] |
R. P. Elliott and F. A. Shunk, The Au Ga (Gold Gallium) system, Bull Alloy Phase Diagr., 1981, 2(3): 356
CrossRef
ADS
Google scholar
|
[34] |
H. Okamoto and T. B. Massalski, The Au Si (Gold Silicon) system, Bull Alloy Phase Diagr., 1983, 4(2): 190
CrossRef
ADS
Google scholar
|
[35] |
M. N. A. Karlsson, K. Deppert, M. H. Magnusson, L. S. Karlsson, and J. O. Malm, Size- and composition-controlled Au-Ga aerosol nanoparticles, Aerosol Sci. Technol., 2004, 38(9): 948
CrossRef
ADS
Google scholar
|
[36] |
M. H. Magnusson, Metal and Semiconductor Nanocrystals for Quantum Devices, Lund University, 2001
|
[37] |
A. Maisels, F. E. Kruis, and H. Fissan, Mixing selectivity in bicomponent, bipolar aggregation, J. Aerosol Sci., 2002, 33(1): 35
CrossRef
ADS
Google scholar
|
[38] |
K. Deppert and L. Samuelson, Self-limiting transformation of monodisperse Ga droplets into GaAs nanocrystals, Appl. Phys. Lett., 1995, 68(10): 1409
CrossRef
ADS
Google scholar
|
[39] |
K. Deppert, M. H. Magnusson, L. Samuelson, J. O. Malm, C. Svensson, and J. O. Bovin, Size-selected nanocrystals of III-V semiconductor materials by the aerotaxy method, J. Aerosol Sci., 1998, 29(5–6): 737
CrossRef
ADS
Google scholar
|
[40] |
K. Deppert, J. O. Bovin, M. H. Magnusson, J. O. Malm, C. Svensson, and L. Samuelson, Aerosol fabrication of nanocrystals of InP, Jpn. J. Appl. Phys., 1999, 38: 1056
CrossRef
ADS
Google scholar
|
[41] |
N. Anttu and H. Q. Xu, Coupling of light into nanowire arrays and subsequent absorption, J. Nanosci. Technol., 2010, 10(11): 7183
|
[42] |
X. Duan, J. Wang, and C. M. Lieber, Synthesis and optical properties of gallium arsenide nanowires, Appl. Phys. Lett., 2000, 76(9): 1116
CrossRef
ADS
Google scholar
|
[43] |
X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature, 2001, 409(6816): 66
CrossRef
ADS
Google scholar
|
[44] |
A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Hamad, E. Juban, A. P. Alivisatos, R. H. Wolters, C. C. Arnold, and J. R. Heath, Synthesis of size-selected, surfacepassivated InP nanocrystals, J. Phys. Chem., 1996, 100(17): 7212
CrossRef
ADS
Google scholar
|
[45] |
M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, Continuous gasphase synthesis of nanowires with tunable properties, Nature, 2012, 492(7427): 90
CrossRef
ADS
Google scholar
|
[46] |
S. H. Kim and M. R. Zachariah, Gas-phase growth of diameter-controlled carbon nanotubes, Mater. Lett., 2007, 61(10): 2079
CrossRef
ADS
Google scholar
|
[47] |
U. Krishnamachari, M. Borgström, B. J. Ohlsson, N. Panev, L. Samuelson, W. Seifert, M. W. Larsson, and L. R. Wallenberg, Defect-free InP nanowires grown in [001] direction on InP (001), Appl. Phys. Lett., 2004, 85(11): 2077
CrossRef
ADS
Google scholar
|
[48] |
To be published separately.
|
[49] |
L. Samuelson, M. Heurlin, M. Magnusson, and K. Deppert, PCT patent application, 2011, WO/2011/142717
|
[50] |
A. Wiedensohler, H. C. Hansson, I. Maximov, and L. Samuelson, Nanometer patterning of InP using aerosol and plasma etching techniques, Appl. Phys. Lett., 1992, 61(7): 837
CrossRef
ADS
Google scholar
|
[51] |
I. Maximov, A. Gustafsson, H. C. Hansson, L. Samuelson, W. Seifert, and A. Wiedensohler, Fabrication of quantum dot structures using aerosol deposition and plasma etching techniques, J. Vac. Sci. Technol., 1993, 11(4): 748
CrossRef
ADS
Google scholar
|
[52] |
K. Deppert, I. Maximov, L. Samuelson, H. C. Hansson, and A. Wiedensohler, Sintered aerosol masks for dry-etched quantum dots, Appl. Phys. Lett., 1994, 64(24): 3293
CrossRef
ADS
Google scholar
|
[53] |
I. Maximov, K. Deppert, L. Montelius, L. Samuelson, S. Gray, M. Johansson, H. C. Hansson, and A. Wiedensohler, Characterization of InP/GaInAs nanometer sized columns produced by aerosol deposition and plasma etching, Mat. Res. Soc. Symp. Proc., 1994, 332: 513
CrossRef
ADS
Google scholar
|
[54] |
I. Maximov, E.-L. Sarwe, M. Beck, K. Deppert, M. Graczyk, M. H. Magnusson, and L. Montelius, Fabrication of Si-based nanoimprint stamps with sub-20 nm features, Microelectr. Eng., 2002, 61–62: 449
CrossRef
ADS
Google scholar
|
[55] |
B. A. Wacaser, K. A. Dick, Z. Zanolli, A. Gustafsson, K. Deppert, and L. Samuelson, Size-selected compound semiconductor quantum dots by nanoparticle conversion, Nanotechnology, 2007, 18(10): 105306
CrossRef
ADS
Google scholar
|
[56] |
K. Watanabe, N. Koguchi, and Y. Gotoh, Fabrication of GaAs quantum dots by modified droplet epitaxy, Jpn. J Appl. Phys., 2000, 39: L79
CrossRef
ADS
Google scholar
|
[57] |
R. S. Wagner and W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett., 1964, 4(5): 89
CrossRef
ADS
Google scholar
|
[58] |
E. I. Givargizov, Fundamental aspects of VLS growth, J. Cryst. Growth, 1975, 31: 20
CrossRef
ADS
Google scholar
|
[59] |
M. Yazawa, M. Koguchi, and K. Hiruma, Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates, Appl. Phys. Lett., 1991, 58(10): 1080
CrossRef
ADS
Google scholar
|
[60] |
K. A. Dick, A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires, Prog. Cryst. Growth Charact. Mater., 2009, 54(3-4): 138
|
[61] |
M. E. Messing, K. Hillerich, J. Bolinsson, K. Storm, J. Johansson, K. A. Dick, and K. Deppert, A comparative study of the effect of gold seed particle preparation method on nanowire growth, Nano Res., 2010, 3(7): 506
CrossRef
ADS
Google scholar
|
[62] |
B. J. Ohlsson, M. T. Björk, M. H. Magnusson, K. Deppert, L. Samuelson, and L. R. Wallenberg, Size-, shape-, and position-controlled GaAs nano-whiskers, Appl. Phys. Lett., 2001, 79(20): 3335
CrossRef
ADS
Google scholar
|
[63] |
M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, One-dimensional heterostructures in semiconductor nano-whiskers, Appl. Phys. Lett., 2002, 80(6): 1058
CrossRef
ADS
Google scholar
|
[64] |
M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, One-dimensional steeplechase for electrons realized, Nano Lett., 2002, 2(2): 87
CrossRef
ADS
Google scholar
|
[65] |
L. I. Samuelson and B. J. Ohlsson, United States patent, 2003, US7,335,908
|
[66] |
L. E. Fröberg, B. A. Wacaser, J. B. Wagner, S. Jeppesen, B. J. Ohlsson, K. Deppert, and L. Samuelson, Transients in the formation of nanowire heterostructures, Nano Lett., 2008, 8(11): 3815
CrossRef
ADS
Google scholar
|
[67] |
B. J. Ohlsson, M. T. Björk, A. I. Persson, C. Thelander, L. R. Wallenberg, M. H. Magnusson, K. Deppert, and L. Samuelson, Growth and characterization of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures, Physica E, 2002, 13(2-4): 1126
CrossRef
ADS
Google scholar
|
[68] |
T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, Epitaxial III–V nanowires on silicon, Nano Lett., 2004, 4(10): 1987
CrossRef
ADS
Google scholar
|
[69] |
L. I. Samuelson and T. M. I. Mårtensson, United States patent, 2009, US7,528,002
|
[70] |
L. I. Samuelson and T. M. I. Mårtensson, United States patent, 2011, US7,960,260
|
[71] |
L. Samuelson, J. Ohlsson, T. Mårtensson, and P. Svensson, United States patent, 2011, US8,084,337
|
[72] |
A. I. Persson, M. W. Larsson, S. Stenström, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, Solid-phase diffusion mechanism for GaAs nanowire growth, Nat. Mater., 2004, 3(10): 677
CrossRef
ADS
Google scholar
|
[73] |
J. Johansson, C. P. T. Svensson, T. Mårtensson, L. Samuelson, and W. Seifert, Mass transport model for semiconductor nanowire growth, J. Phys. Chem. B, 2005, 109(28): 13567
CrossRef
ADS
Google scholar
|
[74] |
L. E. Fröberg, W. Seifert, and J. Johansson, Diameterdependent growth rate of InAs nanowires, Phys. Rev. B, 2007, 76(15): 153401
CrossRef
ADS
Google scholar
|
[75] |
P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires, Nat. Nanotechnol., 2009, 4(1): 50
CrossRef
ADS
Google scholar
|
[76] |
J. Johansson, K. A. Dick, P. Caroff, M. E. Messing, J. Bolinsson, K. Deppert, and L. Samuelson, Diameter dependence of the wurtzite-zinc blende transition in InAs nanowires, J. Phys. Chem. C, 2010, 114(9): 3837
CrossRef
ADS
Google scholar
|
[77] |
K. A. Dick, J. Bolinsson, B. M. Borg, and J. Johansson, Controlling the abruptness of axial heterojunctions in III–V nanowires: Beyond the reservoir effect, Nano Lett., 2012, 12(6): 3200
CrossRef
ADS
Google scholar
|
[78] |
M. Ek, B. M. Borg, J. Johansson, and K. A. Dick, Diameter limitation in growth of III-Sb-containing nanowire heterostructures, ACS Nano, 2013, 7(4): 3668
CrossRef
ADS
Google scholar
|
[79] |
M. A. Verheijen, G. Immink, T. de Smet, M. T. Borgström, and E. P. A. M. Bakkers, Growth kinetics of heterostructured GaP-GaAs nanowires, J. Am. Chem. Soc., 2006, 128(4): 1353
CrossRef
ADS
Google scholar
|
[80] |
H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, X. Zhang, Y. N. Guo, and J. Zou, Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process, Nano Lett., 2007, 7(4): 921
CrossRef
ADS
Google scholar
|
[81] |
L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature, 2002, 420(6911): 57
CrossRef
ADS
Google scholar
|
[82] |
H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, M. A. Fickenscher, S. Perera, T. B. Hoang, L. M. Smith, H. E. Jackson, J. M. Yarrison-Rice, X. Zhang, and J. Zou, Unexpected benefits of rapid growth rate for III–V nanowires, Nano Lett., 2009, 9(2): 695
CrossRef
ADS
Google scholar
|
[83] |
M. Suhara, C. Nagao, H. Honji, Y. Miyamoto, K. Furuya, and R. Takemura, Atomically flat OMVPE growth of GaInAs and InP observed by AFM for level narrowing in resonant tunneling diodes, J. Cryst. Growth, 1997, 179(1–2): 18
CrossRef
ADS
Google scholar
|
[84] |
G. B. Stringfellow, Organometallic Vapor Phase Epitaxy, 2nd Ed., San Diego: Academic Press, 1999
|
[85] |
M. T. Borgström, J. Wallentin, J. Trägårdh, P. Ramvall, M. Ek, L. R. Wallenberg, L. Samuelson, and K. Deppert, In Situ etching for total control over axial and radial nanowire growth, Nano Res., 2010, 3(4): 264
CrossRef
ADS
Google scholar
|
[86] |
J. Wallentin, M. E. Messing, E. Trygg, L. Samuelson, K. Deppert, and M. T. Borgström, Growth of doped InAsyP1-y nanowires with InP shells, J. Cryst. Growth, 2011, 331(1): 8
CrossRef
ADS
Google scholar
|
[87] |
D. Jacobsson, J. M. Persson, D. Kriegner, T. Etzelstorfer, J. Wallentin, J. B. Wagner, J. Stangl, L. Samuelson, K. Deppert, and M. T. Borgström, Particle-assisted GaxIn1-xP nanowire growth for designed bandgap structures, Nanotechnology, 2012, 23(24): 245601
CrossRef
ADS
Google scholar
|
[88] |
J. Wallentin, J. M. Persson, J. B. Wagner, L. Samuelson, K. Deppert, and M. T. Borgström, High-performance single nanowire tunnel diodes, Nano Lett., 2010, 10(3): 974
CrossRef
ADS
Google scholar
|
[89] |
M. T. Borgström, J. Wallentin, K. Kawaguchi, L. Samuelson, and K. Deppert, Dynamics of extremely anisotropic etching of InP nanowires by HCl, Chem. Phys. Lett., 2011, 502(4–6): 222
CrossRef
ADS
Google scholar
|
[90] |
G. L. Tuin, M. T. Borgström, J. Trägårdh, M. Ek, L. R.Wallenberg, L. Samuelson, and M. E. Pistol, Valence band splitting in wurtzite InP nanowires observed by photoluminescence and photoluminescence excitation spectroscopy, Nano Res., 2011, 4(2): 159
CrossRef
ADS
Google scholar
|
[91] |
J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgström, Degenerate p-doping of InP nanowires for large area tunnel diodes, Appl. Phys. Lett., 2011, 99(25): 253015
CrossRef
ADS
Google scholar
|
[92] |
J. Wallentin and M. T. Borgström, Doping of semiconductor nanowires, J. Mater. Res., 2011, 26(17): 2142
CrossRef
ADS
Google scholar
|
[93] |
J. Eskola, J. A. Seetula, and R. S. Timonen, Kinetics of the CH3+HCl/DCl → CH4/CH3D+Cl and CD3+HCl/DCl → CD3H/CD4+Cl reactions: An experimental H atom tunneling investigation, Chem. Phys., 2006, 331(1): 26
CrossRef
ADS
Google scholar
|
[94] |
M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, Nanowires with promise for photovoltaics, IEEE J. Sel. Top. Quantum Electron., 2011, 17(4): 1050
CrossRef
ADS
Google scholar
|
[95] |
K. A. Dick, K. Deppert, L. S. Karlsson, M. W. Larsson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Directed growth of branched nanowire structures, MRS Bull., 2007, 32(02): 127
CrossRef
ADS
Google scholar
|
[96] |
K. A. Dick, K. Deppert, M. W. Larsson, T. Mårtensson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Synthesis of branched “nanotrees” by controlled seeding of multiple branching events, Nat. Mater., 2004, 3(6): 380
CrossRef
ADS
Google scholar
|
[97] |
L. I. Samuelson and K. W. Deppert, United States patent, 2010, US7,662,706
|
[98] |
L. I. Samuelson and K. W. Deppert, United States patent, 2010, US7,875,536
|
[99] |
K. Bayer, K. A. Dick, T. J. Krinke, and K. Deppert, Targeted deposition of Au aerosol nanoparticles on vertical nanowires for the creation of nanotrees, J. Nanopart. Res., 2007, 9(6): 1211
CrossRef
ADS
Google scholar
|
[100] |
K. A. Dick, K. Deppert, M. W. Larsson, W. Seifert, L. Reine Wallenberg, and L. Samuelson, Height-controlled nanowire branches on nanotrees using a polymer mask, Nanotechnology, 2007, 18(3): 035601
CrossRef
ADS
Google scholar
|
[101] |
K. A. Dick, K. Deppert, L. S. Karlsson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Position-controlled interconnected InAs nanowire networks, Nano Lett., 2006, 6(12): 2842
CrossRef
ADS
Google scholar
|
[102] |
K. A. Dick, Z. Geretovszky, A. Mikkelsen, L. S. Karlsson, E. Lundgren, J. O. Malm, J. N. Andersen, L. Samuelson, W. Seifert, B. A.Wacaser, and K. Deppert, Improving InAs nanotree growth with composition-controlled Au-In nanoparticles, Nanotechnology, 2006, 17(5): 1344
CrossRef
ADS
Google scholar
|
[103] |
T. Junno, S. Anand, K. Deppert, L. Montelius, and L. Samuelson, Contact mode atomic force microscopy imaging of nanometer-sized particles, Appl. Phys. Lett., 1995, 66(24): 3295
CrossRef
ADS
Google scholar
|
[104] |
T. Junno, K. Deppert, L. Montelius, and L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett., 1995, 66(26): 3627
CrossRef
ADS
Google scholar
|
[105] |
T. Junno, S. B. Carlsson, H. Q. Xu, L. Montelius, and L. Samuelson, Fabrication of quantum devices by angstromlevel manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett., 1998, 72: 548
CrossRef
ADS
Google scholar
|
[106] |
T. Junno, M. H. Magnusson, S. B. Carlsson, K. Deppert, J. O. Malm, L. Montelius, and L. Samuelson, Single-electron devices via controlled assembly of designed nanoparticles, Microelectron. Eng., 1999, 47(1–4): 179
CrossRef
ADS
Google scholar
|
[107] |
C. Thelander, M. H. Magnusson, and K. Deppert, L. Samuelson, P. R. Poulsen, J. Nygård, and J. Borggreen, Gold nanoparticle single-electron transistor with carbon nanotube leads, Appl. Phys. Lett., 2001, 79: 2016
CrossRef
ADS
Google scholar
|
[108] |
T. Junno, S. B. Carlsson, H. Q. Xu, L. Samuelson, A. O. Orlov, and G. L. Snider, Single-electron tunneling effects in a metallic double dot device, Appl. Phys. Lett., 2002, 80(4): 667
CrossRef
ADS
Google scholar
|
[109] |
L. I. Samuelson and K. W. Deppert, United States patent, 2004, US6,744,065
|
[110] |
S. K. Lee, C. M. Zetterling, M. Östling, I. Åberg, M. H. Magnusson, K. Deppert, L. E. Wernersson, L. Samuelson, and A. Litwin, Reduction of the Schottky barrier height on silicon carbide using Au nano-particles, Solid-State Electron., 2002, 46(9): 1433
CrossRef
ADS
Google scholar
|
[111] |
L. E. Wernersson, A. Litwin, L. Samuelson, and W. Seifert, Controlled Carrier Depletion around Nano-Scale Metal Discs Embedded in GaAs, Jpn. J. Appl. Phys., 1997, 36: L1628
CrossRef
ADS
Google scholar
|
[112] |
L. E. Wernersson, A. Litwin, L. Samuelson, and H. Xu, Operation of a ballistic heterojunction permeable base transistor, IEEE Trans. Electron. Dev., 1997, 44(11): 1829
CrossRef
ADS
Google scholar
|
[113] |
L. E. Wernersson, M. Borgström, B. Gustafson, A. Gustafsson, L. Jarlskog, J. O. Malm, A. Litwin, L. Samuelson, and W. Seifert, MOVPE overgrowth of metallic features for realisation of 3D metal-semiconductor quantum devices, J. Cryst. Growth, 2000, 221(1–4): 704
CrossRef
ADS
Google scholar
|
[114] |
I. Åberg, K. Deppert, M. H. Magnusson, I. Pietzonka, W. Seifert, L. E. Wernersson, and L. Samuelson, Nanoscale tungsten aerosol particles embedded in GaAs, Appl. Phys. Lett., 2002, 80(16): 2976
CrossRef
ADS
Google scholar
|
[115] |
H. Fissan, M. K. Kennedy, T. J. Krinke, and F. E. Kruis, J. Nanopart. Res., 2003, 5(3–4): 299
CrossRef
ADS
Google scholar
|
[116] |
C. Busch, G. Schierning, R. Theissmann, A. Nedic, F. E. Kruis, and R. Schmechel, Thin-film transistors with a channel composed of semiconducting metal oxide nanoparticles deposited from the gas phase, J. Nanopart. Res., 2012, 14(6): 888
CrossRef
ADS
Google scholar
|
[117] |
K. W. Deppert, C. M. H. Magnusson, L. I. Samuelson, and T. J. Krinke, United States patent, 2007, US7,223,444
|
[118] |
M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Nanowire resonant tunneling diodes, Appl. Phys. Lett., 2002, 81(23): 4458
CrossRef
ADS
Google scholar
|
[119] |
L. Samuelson, C. Thelander, M. T. Björk, M. Borgström, K. Deppert, K. A. Dick, A. E. Hansen, T. Mårtensson, N. Panev, A. I. Persson, W. Seifert, N. Sköld, M. W. Larsson, and L. R. Wallenberg, Semiconductor nanowires for 0D and 1D physics and applications, Physica E, 2004, 25(2–3): 313
CrossRef
ADS
Google scholar
|
[120] |
C. Thelander, T. Mårtensson, M. T. Björk, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Single-electron transistors in heterostructure nanowires, Appl. Phys. Lett., 2003, 83(10): 2052
CrossRef
ADS
Google scholar
|
[121] |
M. T. Björk, C. Thelander, A. E. Hansen, L. E. Jensen, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Few-electron quantum dots in nanowires, Nano Lett., 2004, 4(9): 1621
CrossRef
ADS
Google scholar
|
[122] |
M. T. Björk, A. Fuhrer, A. E. Hansen, M. W. Larsson, L. E. Fröberg, and L. Samuelson, Tunable effective g factor in InAs nanowire quantum dots, Phys. Rev. B, 2005, 72(20): 201307
CrossRef
ADS
Google scholar
|
[123] |
A. Fuhrer, L. E. Fröberg, J. N. Pedersen, M. W. Larsson, A. Wacker, M. E. Pistol, and L. Samuelson, Few electron double quantum dots in InAs/InP nanowire heterostructures, Nano Lett., 2007, 7(2): 243
CrossRef
ADS
Google scholar
|
[124] |
A. Fuhrer, C. Fasth, and L. Samuelson, Single electron pumping in InAs nanowire double quantum dots, Appl Phys. Lett., 2007, 91(5): 052109
CrossRef
ADS
Google scholar
|
[125] |
C. Fasth, A. Fuhrer, L. Samuelson, V. N. Golovach, and D. Loss, Direct measurement of the spin–orbit interaction in a two-electron InAs nanowire quantum dot, Phys. Rev. Lett., 2007, 98(26): 266801
CrossRef
ADS
Google scholar
|
[126] |
J. Bao, D. C. Bell, F. Capasso, J. B.Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, Optical properties of rotationally twinned InP nanowire heterostructures, Nano Lett., 2008, 8(3): 836
CrossRef
ADS
Google scholar
|
[127] |
N. Akopian, G. Patriarche, L. Liu, J. C. Harmand, and V. Zwiller, Crystal phase quantum dots, Nano Lett., 2010, 10(4): 1198
CrossRef
ADS
Google scholar
|
[128] |
C. Weber, A. Fuhrer, C. Fasth, G. Lindwall, L. Samuelson, and A. Wacker, Probing confined phonon modes by transport through a nanowire double quantum dot, Phys. Rev. Lett., 2010, 104(3): 036801
CrossRef
ADS
Google scholar
|
[129] |
C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. Gösele, and L. Samuelson, Nanowire-based one-dimensional electronics, Mater. Today, 2006, 9(10): 28
CrossRef
ADS
Google scholar
|
[130] |
C. Thelander, C. Rehnstedt, L. E. Fröberg, E. Lind, T. Mårtensson, P. Caroff, T. Löwgren, B. J. Ohlsson, L. Samuelson, and L. E. Wernersson, Development of a vertical wrap-gated InAs FET, IEEE Trans. Electron. Dev., 2008, 55(11): 3030
CrossRef
ADS
Google scholar
|
[131] |
C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, Monolithic GaAs/InGaP nanowire light emitting diodes on silicon, Nanotechnology, 2008, 19(30): 305201
CrossRef
ADS
Google scholar
|
[132] |
L. I. Samuelson, P. Svensson, J. Ohlsson, and T. Löwgren, United States patent, 2011, US8,049,203
|
[133] |
L. I. Samuelson, B. Pedersen, and B. J. Ohlsson, United States patent, 2012, US8,183,587
|
[134] |
B. Pedersen, L. Samuelson, J. Ohlsson, and P. Svensson, United States patent, 2012, US8,227,817
|
[135] |
B. M. Kayes, H. A. Atwater, and N. S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys., 2005, 97(11): 114302
CrossRef
ADS
Google scholar
|
[136] |
M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, Axial InP nanowire tandem junction grown on a silicon substrate, Nano Lett., 2011, 11(5): 2028
CrossRef
ADS
Google scholar
|
[137] |
L. Samuelson, M. Magnusson, and F. Capasso, United States patent application, US 2010/0186809
|
[138] |
M. Borgström, M. Heurlin, and S. Fält, United States patent application, US 2012/0199187
|
[139] |
N. Anntu and H. Q. Xu, Coupling of light into nanowire arrays and subsequent absorption, J. Nanosci. Nanotechnol., 2010, 10(11): 7183
CrossRef
ADS
Google scholar
|
[140] |
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit, Science, 2013, 339(6123): 1057
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |