Semiconductor nanostructures enabled by aerosol technology

Martin H. Magnusson, B. Jonas Ohlsson, Mikael T. Björk, Kimberly A. Dick, Magnus T. Borgström, Knut Deppert, Lars Samuelson

PDF(1209 KB)
PDF(1209 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (3) : 398-418. DOI: 10.1007/s11467-013-0405-x
Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber)
Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber)

Semiconductor nanostructures enabled by aerosol technology

Author information +
History +

Abstract

Aerosol technology provides efficient methods for producing nanoparticles with well-controlled composition and size distribution. This review provides an overview of methods and results obtained by using aerosol technology for producing nanostructures for a variety of applications in semiconductor physics and device technology. Examples are given from: production of metal and metal alloy particles; semiconductor nanoparticles; semiconductor nanowires, grown both in the aerosol phase and on substrates; physics studies based on individual aerosol-generated devices; and large area devices based on aerosol particles.

Graphical abstract

Keywords

aerosol / nanoparticle / nanowire / metal-organic vapor phase epitaxy (MOVPE) / device physics / light emitting diodes (LED) / solar cell

Cite this article

Download citation ▾
Martin H. Magnusson, B. Jonas Ohlsson, Mikael T. Björk, Kimberly A. Dick, Magnus T. Borgström, Knut Deppert, Lars Samuelson. Semiconductor nanostructures enabled by aerosol technology. Front. Phys., 2014, 9(3): 398‒418 https://doi.org/10.1007/s11467-013-0405-x

References

[1]
R. Mueller, L. Mädler, and S. E. Pratsinis, Nanoparticle synthesis at high production rates by flame spray pyrolysis, Chem. Eng. Sci., 2003, 58(10): 1969
CrossRef ADS Google scholar
[2]
H. G. Craighead, 10-nm resolution electron-beam lithography, J. Appl. Phys., 1984, 55(12): 4430
CrossRef ADS Google scholar
[3]
G. M. Whitesides, J. P. Mathias, and C. T. Seto, Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures, Science, 1991, 254(5036): 1312
CrossRef ADS Google scholar
[4]
A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media, J. Am. Chem. Soc., 1990, 112(4): 1327
CrossRef ADS Google scholar
[5]
W. Seifert, N. Carlsson, M. Miller, M. E. Pistol, L. Samuelson, and L. R. Wallenberg, Insitu growth of quantum dot structures by the Stranski-Krastanow growth mode, Prog. Cryst. Growth Charact. Mater., 1996, 33(4): 423
CrossRef ADS Google scholar
[6]
H. Schift, Nanoimprint lithography: An old story in modern times? Areview, J. Vac. Sci. Technol. B, 2008, 26(2): 458
CrossRef ADS Google scholar
[7]
W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, 2012
[8]
J. H. Vincent, Aerosol Sampling: Science, Standards, Instrumentation and Applications, John Wiley & Sons, 2007
CrossRef ADS Google scholar
[9]
R. C. Flagan, History of electrical aerosol measurements, Aerosol Sci. Technol., 1998, 28(4): 301
CrossRef ADS Google scholar
[10]
P. Kulkarni, P. A. Baron, and K. Willeke (Eds.), Aerosol Measurement: Principles, Techniques, and Applications, John Wiley & Sons, 2011
CrossRef ADS Google scholar
[11]
S. E. Pratsinis, Flame aerosol synthesis of ceramic powders, Pror. Energy Combust. Sci., 1998, 24(3): 197
CrossRef ADS Google scholar
[12]
M. Attoui, M. Paragano, J. Cuevas, and J. Fernandez de la Mora, Tandem DMA generation of strictly monomobile 1-3.5 nm particle standards, Aerosol Sci. Technol., 2013, 47(5): 499
CrossRef ADS Google scholar
[13]
D. R. Chen, D. Y. H. Pui, G. W. Mulholland, and M. Fernandez, Design and testing of an aerosol/sheath inlet for high resolution measurements with a DMA, J. Aerosol Sci., 1999, 30(8): 983
CrossRef ADS Google scholar
[14]
T. J. Krinke, H. Fissan, K. Deppert, M. H. Magnusson, and L. Samuelson, Positioning of nanometer-sized particles on flat surfaces by direct deposition from the gas phase, Appl. Phys. Lett., 2001, 78(23): 3708
CrossRef ADS Google scholar
[15]
H. Kim, J. Kim, H. Yang, J. Suh, T. Kim, B. Han, S. Kim, D. S. Kim, P. V. Pikhitsa, and M. Choi, Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols, Nat. Nanotechnol., 2006, 1(2): 117
CrossRef ADS Google scholar
[16]
L. Qi, P. H. McMurry, D. J. Norris, and S. L. Girshick, Micropattern deposition of colloidal semiconductor nanocrystals by aerodynamic focusing, Aerosol Sci. Technol., 2010, 44(1): 55
CrossRef ADS Google scholar
[17]
S. H. Kim, G. W. Mulholland, and M. R. Zachariah, Understanding ion-mobility and transport properties of aerosol nanowires, J. Aerosol Sci., 2007, 38(8): 823
CrossRef ADS Google scholar
[18]
K. Ehara, C. Hagwood, and K. J. Coakley, Novel method to classify aerosol particles according to their mass-to-charge ratio – Aerosol particle mass analyser, J. Aerosol Sci., 1996, 27(2): 217
CrossRef ADS Google scholar
[19]
H. G. Scheibel and J. Porstendörfer, Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm, J. Aerosol Sci., 1983, 14(2): 113
CrossRef ADS Google scholar
[20]
B. Y. H. Liu and D. Y. H. Pui, Electrical neutralization of aerosols, J. Aerosol Sci., 1974, 5(5): 465
CrossRef ADS Google scholar
[21]
E. O. Knutson and K. T. Whitby, Aerosol classification by electric mobility: Apparatus, theory, and applications, J. Aerosol Sci., 1975, 6(6): 443
CrossRef ADS Google scholar
[22]
M. N. A. Karlsson, K. Deppert, L. S. Karlsson, M. H. Magnusson, J. O. Malm, and N. S. Srinivasan, Compaction of agglomerates of aerosol nanoparticles: A compilation of experimental data, J. Nanopart. Res., 2005, 7(1): 43
CrossRef ADS Google scholar
[23]
M. H. Magnusson, K. Deppert, J. O. Malm, J. O. Bovin, and L. Samuelson, Gold nanoparticles: Production, reshaping, and thermal charging, J. Nanopart. Res., 1999, 1(2): 243
CrossRef ADS Google scholar
[24]
M. H. Magnusson, K. Deppert, and J. O. Malm, Singlecrystalline tungsten nanoparticles produced by thermal decomposition of tungsten hexacarbonyl, J. Mater. Res., 2000, 15(07): 1564
CrossRef ADS Google scholar
[25]
M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices, Appl. Phys. Lett., 2001, 79(3): 433
CrossRef ADS Google scholar
[26]
S. Schwyn, E. Garwin, and A. Schmidt-Ott, Aerosol generation by spark discharge, J. Aerosol Sci., 1988, 19(5): 639
CrossRef ADS Google scholar
[27]
B. O.Meuller, M. E.Messing, D. L. J. Engberg, A. M. Jansson, L. I. M. Johansson, S. M. Norlén, N. Tureson, and K. Deppert, Review of spark discharge generators for production of nanoparticle aerosols, Aerosol Sci. Technol., 2012, 46(11): 1256
CrossRef ADS Google scholar
[28]
N. S. Tabrizi, Q. Xu, N. M. van der Pers, and A. Schmidt-Ott, Generation of mixed metallic nanoparticles from immiscible metals by spark discharge, J. Nanopart. Res., 2010, 12(1): 247
CrossRef ADS Google scholar
[29]
M. E. Messing, R. Westerström, B. O. Meuller, S. Blomberg, J. Gustafson, J. N. Andersen, E. Lundgren, R. van Rijn, O. Balmes, H. Bluhm, and K. Deppert, Generation of Pd model catalyst nanoparticles by spark discharge, J. Phys. Chem. C, 2010, 114(20): 9257
CrossRef ADS Google scholar
[30]
M. E. Messing, C. R. Svensson, J. Pagels, B. O. Meuller, K. Deppert, and J. Rissler, Gas-borne particles with tunable and highly controlled characteristics for nanotoxicology studies, Nanotoxicology, 2013, 7(6): 1052
CrossRef ADS Google scholar
[31]
T. V. Pfeiffer, P. Keijzer, and A. Schmidt-Ott, A controlled spark generator for increased nanoparticle production, Europ. Aerosol Con f., 16 Sep. 2013, Prague
[32]
E. Hontañón, J. M. Palomares, M. Stein, X. Guo, R. Engeln, H. Nirschl, and F. E. Kruis, Experimental study on the transition from spark to arc discharge with respect to nanoparticle production, Europ. Aerosol Conf., 16 Sep. 2013, Prague
[33]
R. P. Elliott and F. A. Shunk, The Au Ga (Gold Gallium) system, Bull Alloy Phase Diagr., 1981, 2(3): 356
CrossRef ADS Google scholar
[34]
H. Okamoto and T. B. Massalski, The Au Si (Gold Silicon) system, Bull Alloy Phase Diagr., 1983, 4(2): 190
CrossRef ADS Google scholar
[35]
M. N. A. Karlsson, K. Deppert, M. H. Magnusson, L. S. Karlsson, and J. O. Malm, Size- and composition-controlled Au-Ga aerosol nanoparticles, Aerosol Sci. Technol., 2004, 38(9): 948
CrossRef ADS Google scholar
[36]
M. H. Magnusson, Metal and Semiconductor Nanocrystals for Quantum Devices, Lund University, 2001
[37]
A. Maisels, F. E. Kruis, and H. Fissan, Mixing selectivity in bicomponent, bipolar aggregation, J. Aerosol Sci., 2002, 33(1): 35
CrossRef ADS Google scholar
[38]
K. Deppert and L. Samuelson, Self-limiting transformation of monodisperse Ga droplets into GaAs nanocrystals, Appl. Phys. Lett., 1995, 68(10): 1409
CrossRef ADS Google scholar
[39]
K. Deppert, M. H. Magnusson, L. Samuelson, J. O. Malm, C. Svensson, and J. O. Bovin, Size-selected nanocrystals of III-V semiconductor materials by the aerotaxy method, J. Aerosol Sci., 1998, 29(5–6): 737
CrossRef ADS Google scholar
[40]
K. Deppert, J. O. Bovin, M. H. Magnusson, J. O. Malm, C. Svensson, and L. Samuelson, Aerosol fabrication of nanocrystals of InP, Jpn. J. Appl. Phys., 1999, 38: 1056
CrossRef ADS Google scholar
[41]
N. Anttu and H. Q. Xu, Coupling of light into nanowire arrays and subsequent absorption, J. Nanosci. Technol., 2010, 10(11): 7183
[42]
X. Duan, J. Wang, and C. M. Lieber, Synthesis and optical properties of gallium arsenide nanowires, Appl. Phys. Lett., 2000, 76(9): 1116
CrossRef ADS Google scholar
[43]
X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature, 2001, 409(6816): 66
CrossRef ADS Google scholar
[44]
A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Hamad, E. Juban, A. P. Alivisatos, R. H. Wolters, C. C. Arnold, and J. R. Heath, Synthesis of size-selected, surfacepassivated InP nanocrystals, J. Phys. Chem., 1996, 100(17): 7212
CrossRef ADS Google scholar
[45]
M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, Continuous gasphase synthesis of nanowires with tunable properties, Nature, 2012, 492(7427): 90
CrossRef ADS Google scholar
[46]
S. H. Kim and M. R. Zachariah, Gas-phase growth of diameter-controlled carbon nanotubes, Mater. Lett., 2007, 61(10): 2079
CrossRef ADS Google scholar
[47]
U. Krishnamachari, M. Borgström, B. J. Ohlsson, N. Panev, L. Samuelson, W. Seifert, M. W. Larsson, and L. R. Wallenberg, Defect-free InP nanowires grown in [001] direction on InP (001), Appl. Phys. Lett., 2004, 85(11): 2077
CrossRef ADS Google scholar
[48]
To be published separately.
[49]
L. Samuelson, M. Heurlin, M. Magnusson, and K. Deppert, PCT patent application, 2011, WO/2011/142717
[50]
A. Wiedensohler, H. C. Hansson, I. Maximov, and L. Samuelson, Nanometer patterning of InP using aerosol and plasma etching techniques, Appl. Phys. Lett., 1992, 61(7): 837
CrossRef ADS Google scholar
[51]
I. Maximov, A. Gustafsson, H. C. Hansson, L. Samuelson, W. Seifert, and A. Wiedensohler, Fabrication of quantum dot structures using aerosol deposition and plasma etching techniques, J. Vac. Sci. Technol., 1993, 11(4): 748
CrossRef ADS Google scholar
[52]
K. Deppert, I. Maximov, L. Samuelson, H. C. Hansson, and A. Wiedensohler, Sintered aerosol masks for dry-etched quantum dots, Appl. Phys. Lett., 1994, 64(24): 3293
CrossRef ADS Google scholar
[53]
I. Maximov, K. Deppert, L. Montelius, L. Samuelson, S. Gray, M. Johansson, H. C. Hansson, and A. Wiedensohler, Characterization of InP/GaInAs nanometer sized columns produced by aerosol deposition and plasma etching, Mat. Res. Soc. Symp. Proc., 1994, 332: 513
CrossRef ADS Google scholar
[54]
I. Maximov, E.-L. Sarwe, M. Beck, K. Deppert, M. Graczyk, M. H. Magnusson, and L. Montelius, Fabrication of Si-based nanoimprint stamps with sub-20 nm features, Microelectr. Eng., 2002, 61–62: 449
CrossRef ADS Google scholar
[55]
B. A. Wacaser, K. A. Dick, Z. Zanolli, A. Gustafsson, K. Deppert, and L. Samuelson, Size-selected compound semiconductor quantum dots by nanoparticle conversion, Nanotechnology, 2007, 18(10): 105306
CrossRef ADS Google scholar
[56]
K. Watanabe, N. Koguchi, and Y. Gotoh, Fabrication of GaAs quantum dots by modified droplet epitaxy, Jpn. J Appl. Phys., 2000, 39: L79
CrossRef ADS Google scholar
[57]
R. S. Wagner and W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett., 1964, 4(5): 89
CrossRef ADS Google scholar
[58]
E. I. Givargizov, Fundamental aspects of VLS growth, J. Cryst. Growth, 1975, 31: 20
CrossRef ADS Google scholar
[59]
M. Yazawa, M. Koguchi, and K. Hiruma, Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates, Appl. Phys. Lett., 1991, 58(10): 1080
CrossRef ADS Google scholar
[60]
K. A. Dick, A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires, Prog. Cryst. Growth Charact. Mater., 2009, 54(3-4): 138
[61]
M. E. Messing, K. Hillerich, J. Bolinsson, K. Storm, J. Johansson, K. A. Dick, and K. Deppert, A comparative study of the effect of gold seed particle preparation method on nanowire growth, Nano Res., 2010, 3(7): 506
CrossRef ADS Google scholar
[62]
B. J. Ohlsson, M. T. Björk, M. H. Magnusson, K. Deppert, L. Samuelson, and L. R. Wallenberg, Size-, shape-, and position-controlled GaAs nano-whiskers, Appl. Phys. Lett., 2001, 79(20): 3335
CrossRef ADS Google scholar
[63]
M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, One-dimensional heterostructures in semiconductor nano-whiskers, Appl. Phys. Lett., 2002, 80(6): 1058
CrossRef ADS Google scholar
[64]
M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, One-dimensional steeplechase for electrons realized, Nano Lett., 2002, 2(2): 87
CrossRef ADS Google scholar
[65]
L. I. Samuelson and B. J. Ohlsson, United States patent, 2003, US7,335,908
[66]
L. E. Fröberg, B. A. Wacaser, J. B. Wagner, S. Jeppesen, B. J. Ohlsson, K. Deppert, and L. Samuelson, Transients in the formation of nanowire heterostructures, Nano Lett., 2008, 8(11): 3815
CrossRef ADS Google scholar
[67]
B. J. Ohlsson, M. T. Björk, A. I. Persson, C. Thelander, L. R. Wallenberg, M. H. Magnusson, K. Deppert, and L. Samuelson, Growth and characterization of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures, Physica E, 2002, 13(2-4): 1126
CrossRef ADS Google scholar
[68]
T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, Epitaxial III–V nanowires on silicon, Nano Lett., 2004, 4(10): 1987
CrossRef ADS Google scholar
[69]
L. I. Samuelson and T. M. I. Mårtensson, United States patent, 2009, US7,528,002
[70]
L. I. Samuelson and T. M. I. Mårtensson, United States patent, 2011, US7,960,260
[71]
L. Samuelson, J. Ohlsson, T. Mårtensson, and P. Svensson, United States patent, 2011, US8,084,337
[72]
A. I. Persson, M. W. Larsson, S. Stenström, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, Solid-phase diffusion mechanism for GaAs nanowire growth, Nat. Mater., 2004, 3(10): 677
CrossRef ADS Google scholar
[73]
J. Johansson, C. P. T. Svensson, T. Mårtensson, L. Samuelson, and W. Seifert, Mass transport model for semiconductor nanowire growth, J. Phys. Chem. B, 2005, 109(28): 13567
CrossRef ADS Google scholar
[74]
L. E. Fröberg, W. Seifert, and J. Johansson, Diameterdependent growth rate of InAs nanowires, Phys. Rev. B, 2007, 76(15): 153401
CrossRef ADS Google scholar
[75]
P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires, Nat. Nanotechnol., 2009, 4(1): 50
CrossRef ADS Google scholar
[76]
J. Johansson, K. A. Dick, P. Caroff, M. E. Messing, J. Bolinsson, K. Deppert, and L. Samuelson, Diameter dependence of the wurtzite-zinc blende transition in InAs nanowires, J. Phys. Chem. C, 2010, 114(9): 3837
CrossRef ADS Google scholar
[77]
K. A. Dick, J. Bolinsson, B. M. Borg, and J. Johansson, Controlling the abruptness of axial heterojunctions in III–V nanowires: Beyond the reservoir effect, Nano Lett., 2012, 12(6): 3200
CrossRef ADS Google scholar
[78]
M. Ek, B. M. Borg, J. Johansson, and K. A. Dick, Diameter limitation in growth of III-Sb-containing nanowire heterostructures, ACS Nano, 2013, 7(4): 3668
CrossRef ADS Google scholar
[79]
M. A. Verheijen, G. Immink, T. de Smet, M. T. Borgström, and E. P. A. M. Bakkers, Growth kinetics of heterostructured GaP-GaAs nanowires, J. Am. Chem. Soc., 2006, 128(4): 1353
CrossRef ADS Google scholar
[80]
H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, X. Zhang, Y. N. Guo, and J. Zou, Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process, Nano Lett., 2007, 7(4): 921
CrossRef ADS Google scholar
[81]
L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature, 2002, 420(6911): 57
CrossRef ADS Google scholar
[82]
H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, M. A. Fickenscher, S. Perera, T. B. Hoang, L. M. Smith, H. E. Jackson, J. M. Yarrison-Rice, X. Zhang, and J. Zou, Unexpected benefits of rapid growth rate for III–V nanowires, Nano Lett., 2009, 9(2): 695
CrossRef ADS Google scholar
[83]
M. Suhara, C. Nagao, H. Honji, Y. Miyamoto, K. Furuya, and R. Takemura, Atomically flat OMVPE growth of GaInAs and InP observed by AFM for level narrowing in resonant tunneling diodes, J. Cryst. Growth, 1997, 179(1–2): 18
CrossRef ADS Google scholar
[84]
G. B. Stringfellow, Organometallic Vapor Phase Epitaxy, 2nd Ed., San Diego: Academic Press, 1999
[85]
M. T. Borgström, J. Wallentin, J. Trägårdh, P. Ramvall, M. Ek, L. R. Wallenberg, L. Samuelson, and K. Deppert, In Situ etching for total control over axial and radial nanowire growth, Nano Res., 2010, 3(4): 264
CrossRef ADS Google scholar
[86]
J. Wallentin, M. E. Messing, E. Trygg, L. Samuelson, K. Deppert, and M. T. Borgström, Growth of doped InAsyP1-y nanowires with InP shells, J. Cryst. Growth, 2011, 331(1): 8
CrossRef ADS Google scholar
[87]
D. Jacobsson, J. M. Persson, D. Kriegner, T. Etzelstorfer, J. Wallentin, J. B. Wagner, J. Stangl, L. Samuelson, K. Deppert, and M. T. Borgström, Particle-assisted GaxIn1-xP nanowire growth for designed bandgap structures, Nanotechnology, 2012, 23(24): 245601
CrossRef ADS Google scholar
[88]
J. Wallentin, J. M. Persson, J. B. Wagner, L. Samuelson, K. Deppert, and M. T. Borgström, High-performance single nanowire tunnel diodes, Nano Lett., 2010, 10(3): 974
CrossRef ADS Google scholar
[89]
M. T. Borgström, J. Wallentin, K. Kawaguchi, L. Samuelson, and K. Deppert, Dynamics of extremely anisotropic etching of InP nanowires by HCl, Chem. Phys. Lett., 2011, 502(4–6): 222
CrossRef ADS Google scholar
[90]
G. L. Tuin, M. T. Borgström, J. Trägårdh, M. Ek, L. R.Wallenberg, L. Samuelson, and M. E. Pistol, Valence band splitting in wurtzite InP nanowires observed by photoluminescence and photoluminescence excitation spectroscopy, Nano Res., 2011, 4(2): 159
CrossRef ADS Google scholar
[91]
J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgström, Degenerate p-doping of InP nanowires for large area tunnel diodes, Appl. Phys. Lett., 2011, 99(25): 253015
CrossRef ADS Google scholar
[92]
J. Wallentin and M. T. Borgström, Doping of semiconductor nanowires, J. Mater. Res., 2011, 26(17): 2142
CrossRef ADS Google scholar
[93]
J. Eskola, J. A. Seetula, and R. S. Timonen, Kinetics of the CH3+HCl/DCl → CH4/CH3D+Cl and CD3+HCl/DCl → CD3H/CD4+Cl reactions: An experimental H atom tunneling investigation, Chem. Phys., 2006, 331(1): 26
CrossRef ADS Google scholar
[94]
M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, Nanowires with promise for photovoltaics, IEEE J. Sel. Top. Quantum Electron., 2011, 17(4): 1050
CrossRef ADS Google scholar
[95]
K. A. Dick, K. Deppert, L. S. Karlsson, M. W. Larsson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Directed growth of branched nanowire structures, MRS Bull., 2007, 32(02): 127
CrossRef ADS Google scholar
[96]
K. A. Dick, K. Deppert, M. W. Larsson, T. Mårtensson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Synthesis of branched “nanotrees” by controlled seeding of multiple branching events, Nat. Mater., 2004, 3(6): 380
CrossRef ADS Google scholar
[97]
L. I. Samuelson and K. W. Deppert, United States patent, 2010, US7,662,706
[98]
L. I. Samuelson and K. W. Deppert, United States patent, 2010, US7,875,536
[99]
K. Bayer, K. A. Dick, T. J. Krinke, and K. Deppert, Targeted deposition of Au aerosol nanoparticles on vertical nanowires for the creation of nanotrees, J. Nanopart. Res., 2007, 9(6): 1211
CrossRef ADS Google scholar
[100]
K. A. Dick, K. Deppert, M. W. Larsson, W. Seifert, L. Reine Wallenberg, and L. Samuelson, Height-controlled nanowire branches on nanotrees using a polymer mask, Nanotechnology, 2007, 18(3): 035601
CrossRef ADS Google scholar
[101]
K. A. Dick, K. Deppert, L. S. Karlsson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Position-controlled interconnected InAs nanowire networks, Nano Lett., 2006, 6(12): 2842
CrossRef ADS Google scholar
[102]
K. A. Dick, Z. Geretovszky, A. Mikkelsen, L. S. Karlsson, E. Lundgren, J. O. Malm, J. N. Andersen, L. Samuelson, W. Seifert, B. A.Wacaser, and K. Deppert, Improving InAs nanotree growth with composition-controlled Au-In nanoparticles, Nanotechnology, 2006, 17(5): 1344
CrossRef ADS Google scholar
[103]
T. Junno, S. Anand, K. Deppert, L. Montelius, and L. Samuelson, Contact mode atomic force microscopy imaging of nanometer-sized particles, Appl. Phys. Lett., 1995, 66(24): 3295
CrossRef ADS Google scholar
[104]
T. Junno, K. Deppert, L. Montelius, and L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett., 1995, 66(26): 3627
CrossRef ADS Google scholar
[105]
T. Junno, S. B. Carlsson, H. Q. Xu, L. Montelius, and L. Samuelson, Fabrication of quantum devices by angstromlevel manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett., 1998, 72: 548
CrossRef ADS Google scholar
[106]
T. Junno, M. H. Magnusson, S. B. Carlsson, K. Deppert, J. O. Malm, L. Montelius, and L. Samuelson, Single-electron devices via controlled assembly of designed nanoparticles, Microelectron. Eng., 1999, 47(1–4): 179
CrossRef ADS Google scholar
[107]
C. Thelander, M. H. Magnusson, and K. Deppert, L. Samuelson, P. R. Poulsen, J. Nygård, and J. Borggreen, Gold nanoparticle single-electron transistor with carbon nanotube leads, Appl. Phys. Lett., 2001, 79: 2016
CrossRef ADS Google scholar
[108]
T. Junno, S. B. Carlsson, H. Q. Xu, L. Samuelson, A. O. Orlov, and G. L. Snider, Single-electron tunneling effects in a metallic double dot device, Appl. Phys. Lett., 2002, 80(4): 667
CrossRef ADS Google scholar
[109]
L. I. Samuelson and K. W. Deppert, United States patent, 2004, US6,744,065
[110]
S. K. Lee, C. M. Zetterling, M. Östling, I. Åberg, M. H. Magnusson, K. Deppert, L. E. Wernersson, L. Samuelson, and A. Litwin, Reduction of the Schottky barrier height on silicon carbide using Au nano-particles, Solid-State Electron., 2002, 46(9): 1433
CrossRef ADS Google scholar
[111]
L. E. Wernersson, A. Litwin, L. Samuelson, and W. Seifert, Controlled Carrier Depletion around Nano-Scale Metal Discs Embedded in GaAs, Jpn. J. Appl. Phys., 1997, 36: L1628
CrossRef ADS Google scholar
[112]
L. E. Wernersson, A. Litwin, L. Samuelson, and H. Xu, Operation of a ballistic heterojunction permeable base transistor, IEEE Trans. Electron. Dev., 1997, 44(11): 1829
CrossRef ADS Google scholar
[113]
L. E. Wernersson, M. Borgström, B. Gustafson, A. Gustafsson, L. Jarlskog, J. O. Malm, A. Litwin, L. Samuelson, and W. Seifert, MOVPE overgrowth of metallic features for realisation of 3D metal-semiconductor quantum devices, J. Cryst. Growth, 2000, 221(1–4): 704
CrossRef ADS Google scholar
[114]
I. Åberg, K. Deppert, M. H. Magnusson, I. Pietzonka, W. Seifert, L. E. Wernersson, and L. Samuelson, Nanoscale tungsten aerosol particles embedded in GaAs, Appl. Phys. Lett., 2002, 80(16): 2976
CrossRef ADS Google scholar
[115]
H. Fissan, M. K. Kennedy, T. J. Krinke, and F. E. Kruis, J. Nanopart. Res., 2003, 5(3–4): 299
CrossRef ADS Google scholar
[116]
C. Busch, G. Schierning, R. Theissmann, A. Nedic, F. E. Kruis, and R. Schmechel, Thin-film transistors with a channel composed of semiconducting metal oxide nanoparticles deposited from the gas phase, J. Nanopart. Res., 2012, 14(6): 888
CrossRef ADS Google scholar
[117]
K. W. Deppert, C. M. H. Magnusson, L. I. Samuelson, and T. J. Krinke, United States patent, 2007, US7,223,444
[118]
M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Nanowire resonant tunneling diodes, Appl. Phys. Lett., 2002, 81(23): 4458
CrossRef ADS Google scholar
[119]
L. Samuelson, C. Thelander, M. T. Björk, M. Borgström, K. Deppert, K. A. Dick, A. E. Hansen, T. Mårtensson, N. Panev, A. I. Persson, W. Seifert, N. Sköld, M. W. Larsson, and L. R. Wallenberg, Semiconductor nanowires for 0D and 1D physics and applications, Physica E, 2004, 25(2–3): 313
CrossRef ADS Google scholar
[120]
C. Thelander, T. Mårtensson, M. T. Björk, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Single-electron transistors in heterostructure nanowires, Appl. Phys. Lett., 2003, 83(10): 2052
CrossRef ADS Google scholar
[121]
M. T. Björk, C. Thelander, A. E. Hansen, L. E. Jensen, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Few-electron quantum dots in nanowires, Nano Lett., 2004, 4(9): 1621
CrossRef ADS Google scholar
[122]
M. T. Björk, A. Fuhrer, A. E. Hansen, M. W. Larsson, L. E. Fröberg, and L. Samuelson, Tunable effective g factor in InAs nanowire quantum dots, Phys. Rev. B, 2005, 72(20): 201307
CrossRef ADS Google scholar
[123]
A. Fuhrer, L. E. Fröberg, J. N. Pedersen, M. W. Larsson, A. Wacker, M. E. Pistol, and L. Samuelson, Few electron double quantum dots in InAs/InP nanowire heterostructures, Nano Lett., 2007, 7(2): 243
CrossRef ADS Google scholar
[124]
A. Fuhrer, C. Fasth, and L. Samuelson, Single electron pumping in InAs nanowire double quantum dots, Appl Phys. Lett., 2007, 91(5): 052109
CrossRef ADS Google scholar
[125]
C. Fasth, A. Fuhrer, L. Samuelson, V. N. Golovach, and D. Loss, Direct measurement of the spin–orbit interaction in a two-electron InAs nanowire quantum dot, Phys. Rev. Lett., 2007, 98(26): 266801
CrossRef ADS Google scholar
[126]
J. Bao, D. C. Bell, F. Capasso, J. B.Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, Optical properties of rotationally twinned InP nanowire heterostructures, Nano Lett., 2008, 8(3): 836
CrossRef ADS Google scholar
[127]
N. Akopian, G. Patriarche, L. Liu, J. C. Harmand, and V. Zwiller, Crystal phase quantum dots, Nano Lett., 2010, 10(4): 1198
CrossRef ADS Google scholar
[128]
C. Weber, A. Fuhrer, C. Fasth, G. Lindwall, L. Samuelson, and A. Wacker, Probing confined phonon modes by transport through a nanowire double quantum dot, Phys. Rev. Lett., 2010, 104(3): 036801
CrossRef ADS Google scholar
[129]
C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. Gösele, and L. Samuelson, Nanowire-based one-dimensional electronics, Mater. Today, 2006, 9(10): 28
CrossRef ADS Google scholar
[130]
C. Thelander, C. Rehnstedt, L. E. Fröberg, E. Lind, T. Mårtensson, P. Caroff, T. Löwgren, B. J. Ohlsson, L. Samuelson, and L. E. Wernersson, Development of a vertical wrap-gated InAs FET, IEEE Trans. Electron. Dev., 2008, 55(11): 3030
CrossRef ADS Google scholar
[131]
C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, Monolithic GaAs/InGaP nanowire light emitting diodes on silicon, Nanotechnology, 2008, 19(30): 305201
CrossRef ADS Google scholar
[132]
L. I. Samuelson, P. Svensson, J. Ohlsson, and T. Löwgren, United States patent, 2011, US8,049,203
[133]
L. I. Samuelson, B. Pedersen, and B. J. Ohlsson, United States patent, 2012, US8,183,587
[134]
B. Pedersen, L. Samuelson, J. Ohlsson, and P. Svensson, United States patent, 2012, US8,227,817
[135]
B. M. Kayes, H. A. Atwater, and N. S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys., 2005, 97(11): 114302
CrossRef ADS Google scholar
[136]
M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, Axial InP nanowire tandem junction grown on a silicon substrate, Nano Lett., 2011, 11(5): 2028
CrossRef ADS Google scholar
[137]
L. Samuelson, M. Magnusson, and F. Capasso, United States patent application, US 2010/0186809
[138]
M. Borgström, M. Heurlin, and S. Fält, United States patent application, US 2012/0199187
[139]
N. Anntu and H. Q. Xu, Coupling of light into nanowire arrays and subsequent absorption, J. Nanosci. Nanotechnol., 2010, 10(11): 7183
CrossRef ADS Google scholar
[140]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit, Science, 2013, 339(6123): 1057
CrossRef ADS Google scholar
Funding
 

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1209 KB)

Accesses

Citations

Detail

Sections
Recommended

/