Semiconductor nanostructures enabled by aerosol technology

Martin H. Magnusson, B. Jonas Ohlsson, Mikael T. Björk, Kimberly A. Dick, Magnus T. Borgström, Knut Deppert, Lars Samuelson

Front. Phys. ›› 2014, Vol. 9 ›› Issue (3) : 398-418.

PDF(1209 KB)
Front. Phys. All Journals
PDF(1209 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (3) : 398-418. DOI: 10.1007/s11467-013-0405-x
Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber)
Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber)

Semiconductor nanostructures enabled by aerosol technology

Author information +
History +

Abstract

Aerosol technology provides efficient methods for producing nanoparticles with well-controlled composition and size distribution. This review provides an overview of methods and results obtained by using aerosol technology for producing nanostructures for a variety of applications in semiconductor physics and device technology. Examples are given from: production of metal and metal alloy particles; semiconductor nanoparticles; semiconductor nanowires, grown both in the aerosol phase and on substrates; physics studies based on individual aerosol-generated devices; and large area devices based on aerosol particles.

Graphical abstract

Keywords

aerosol / nanoparticle / nanowire / metal-organic vapor phase epitaxy (MOVPE) / device physics / light emitting diodes (LED) / solar cell

Cite this article

Download citation ▾
Martin H. Magnusson, B. Jonas Ohlsson, Mikael T. Björk, Kimberly A. Dick, Magnus T. Borgström, Knut Deppert, Lars Samuelson. Semiconductor nanostructures enabled by aerosol technology. Front. Phys., 2014, 9(3): 398‒418 https://doi.org/10.1007/s11467-013-0405-x
This is a preview of subscription content, contact us for subscripton.

References

[1]
R. Mueller, L. Mädler, and S. E. Pratsinis, Nanoparticle synthesis at high production rates by flame spray pyrolysis, Chem. Eng. Sci., 2003, 58(10): 1969
CrossRef ADS Google scholar
[2]
H. G. Craighead, 10-nm resolution electron-beam lithography, J. Appl. Phys., 1984, 55(12): 4430
CrossRef ADS Google scholar
[3]
G. M. Whitesides, J. P. Mathias, and C. T. Seto, Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures, Science, 1991, 254(5036): 1312
CrossRef ADS Google scholar
[4]
A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media, J. Am. Chem. Soc., 1990, 112(4): 1327
CrossRef ADS Google scholar
[5]
W. Seifert, N. Carlsson, M. Miller, M. E. Pistol, L. Samuelson, and L. R. Wallenberg, Insitu growth of quantum dot structures by the Stranski-Krastanow growth mode, Prog. Cryst. Growth Charact. Mater., 1996, 33(4): 423
CrossRef ADS Google scholar
[6]
H. Schift, Nanoimprint lithography: An old story in modern times? Areview, J. Vac. Sci. Technol. B, 2008, 26(2): 458
CrossRef ADS Google scholar
[7]
W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, 2012
[8]
J. H. Vincent, Aerosol Sampling: Science, Standards, Instrumentation and Applications, John Wiley & Sons, 2007
CrossRef ADS Google scholar
[9]
R. C. Flagan, History of electrical aerosol measurements, Aerosol Sci. Technol., 1998, 28(4): 301
CrossRef ADS Google scholar
[10]
P. Kulkarni, P. A. Baron, and K. Willeke (Eds.), Aerosol Measurement: Principles, Techniques, and Applications, John Wiley & Sons, 2011
CrossRef ADS Google scholar
[11]
S. E. Pratsinis, Flame aerosol synthesis of ceramic powders, Pror. Energy Combust. Sci., 1998, 24(3): 197
CrossRef ADS Google scholar
[12]
M. Attoui, M. Paragano, J. Cuevas, and J. Fernandez de la Mora, Tandem DMA generation of strictly monomobile 1-3.5 nm particle standards, Aerosol Sci. Technol., 2013, 47(5): 499
CrossRef ADS Google scholar
[13]
D. R. Chen, D. Y. H. Pui, G. W. Mulholland, and M. Fernandez, Design and testing of an aerosol/sheath inlet for high resolution measurements with a DMA, J. Aerosol Sci., 1999, 30(8): 983
CrossRef ADS Google scholar
[14]
T. J. Krinke, H. Fissan, K. Deppert, M. H. Magnusson, and L. Samuelson, Positioning of nanometer-sized particles on flat surfaces by direct deposition from the gas phase, Appl. Phys. Lett., 2001, 78(23): 3708
CrossRef ADS Google scholar
[15]
H. Kim, J. Kim, H. Yang, J. Suh, T. Kim, B. Han, S. Kim, D. S. Kim, P. V. Pikhitsa, and M. Choi, Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols, Nat. Nanotechnol., 2006, 1(2): 117
CrossRef ADS Google scholar
[16]
L. Qi, P. H. McMurry, D. J. Norris, and S. L. Girshick, Micropattern deposition of colloidal semiconductor nanocrystals by aerodynamic focusing, Aerosol Sci. Technol., 2010, 44(1): 55
CrossRef ADS Google scholar
[17]
S. H. Kim, G. W. Mulholland, and M. R. Zachariah, Understanding ion-mobility and transport properties of aerosol nanowires, J. Aerosol Sci., 2007, 38(8): 823
CrossRef ADS Google scholar
[18]
K. Ehara, C. Hagwood, and K. J. Coakley, Novel method to classify aerosol particles according to their mass-to-charge ratio – Aerosol particle mass analyser, J. Aerosol Sci., 1996, 27(2): 217
CrossRef ADS Google scholar
[19]
H. G. Scheibel and J. Porstendörfer, Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm, J. Aerosol Sci., 1983, 14(2): 113
CrossRef ADS Google scholar
[20]
B. Y. H. Liu and D. Y. H. Pui, Electrical neutralization of aerosols, J. Aerosol Sci., 1974, 5(5): 465
CrossRef ADS Google scholar
[21]
E. O. Knutson and K. T. Whitby, Aerosol classification by electric mobility: Apparatus, theory, and applications, J. Aerosol Sci., 1975, 6(6): 443
CrossRef ADS Google scholar
[22]
M. N. A. Karlsson, K. Deppert, L. S. Karlsson, M. H. Magnusson, J. O. Malm, and N. S. Srinivasan, Compaction of agglomerates of aerosol nanoparticles: A compilation of experimental data, J. Nanopart. Res., 2005, 7(1): 43
CrossRef ADS Google scholar
[23]
M. H. Magnusson, K. Deppert, J. O. Malm, J. O. Bovin, and L. Samuelson, Gold nanoparticles: Production, reshaping, and thermal charging, J. Nanopart. Res., 1999, 1(2): 243
CrossRef ADS Google scholar
[24]
M. H. Magnusson, K. Deppert, and J. O. Malm, Singlecrystalline tungsten nanoparticles produced by thermal decomposition of tungsten hexacarbonyl, J. Mater. Res., 2000, 15(07): 1564
CrossRef ADS Google scholar
[25]
M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices, Appl. Phys. Lett., 2001, 79(3): 433
CrossRef ADS Google scholar
[26]
S. Schwyn, E. Garwin, and A. Schmidt-Ott, Aerosol generation by spark discharge, J. Aerosol Sci., 1988, 19(5): 639
CrossRef ADS Google scholar
[27]
B. O.Meuller, M. E.Messing, D. L. J. Engberg, A. M. Jansson, L. I. M. Johansson, S. M. Norlén, N. Tureson, and K. Deppert, Review of spark discharge generators for production of nanoparticle aerosols, Aerosol Sci. Technol., 2012, 46(11): 1256
CrossRef ADS Google scholar
[28]
N. S. Tabrizi, Q. Xu, N. M. van der Pers, and A. Schmidt-Ott, Generation of mixed metallic nanoparticles from immiscible metals by spark discharge, J. Nanopart. Res., 2010, 12(1): 247
CrossRef ADS Google scholar
[29]
M. E. Messing, R. Westerström, B. O. Meuller, S. Blomberg, J. Gustafson, J. N. Andersen, E. Lundgren, R. van Rijn, O. Balmes, H. Bluhm, and K. Deppert, Generation of Pd model catalyst nanoparticles by spark discharge, J. Phys. Chem. C, 2010, 114(20): 9257
CrossRef ADS Google scholar
[30]
M. E. Messing, C. R. Svensson, J. Pagels, B. O. Meuller, K. Deppert, and J. Rissler, Gas-borne particles with tunable and highly controlled characteristics for nanotoxicology studies, Nanotoxicology, 2013, 7(6): 1052
CrossRef ADS Google scholar
[31]
T. V. Pfeiffer, P. Keijzer, and A. Schmidt-Ott, A controlled spark generator for increased nanoparticle production, Europ. Aerosol Con f., 16 Sep. 2013, Prague
[32]
E. Hontañón, J. M. Palomares, M. Stein, X. Guo, R. Engeln, H. Nirschl, and F. E. Kruis, Experimental study on the transition from spark to arc discharge with respect to nanoparticle production, Europ. Aerosol Conf., 16 Sep. 2013, Prague
[33]
R. P. Elliott and F. A. Shunk, The Au Ga (Gold Gallium) system, Bull Alloy Phase Diagr., 1981, 2(3): 356
CrossRef ADS Google scholar
[34]
H. Okamoto and T. B. Massalski, The Au Si (Gold Silicon) system, Bull Alloy Phase Diagr., 1983, 4(2): 190
CrossRef ADS Google scholar
[35]
M. N. A. Karlsson, K. Deppert, M. H. Magnusson, L. S. Karlsson, and J. O. Malm, Size- and composition-controlled Au-Ga aerosol nanoparticles, Aerosol Sci. Technol., 2004, 38(9): 948
CrossRef ADS Google scholar
[36]
M. H. Magnusson, Metal and Semiconductor Nanocrystals for Quantum Devices, Lund University, 2001
[37]
A. Maisels, F. E. Kruis, and H. Fissan, Mixing selectivity in bicomponent, bipolar aggregation, J. Aerosol Sci., 2002, 33(1): 35
CrossRef ADS Google scholar
[38]
K. Deppert and L. Samuelson, Self-limiting transformation of monodisperse Ga droplets into GaAs nanocrystals, Appl. Phys. Lett., 1995, 68(10): 1409
CrossRef ADS Google scholar
[39]
K. Deppert, M. H. Magnusson, L. Samuelson, J. O. Malm, C. Svensson, and J. O. Bovin, Size-selected nanocrystals of III-V semiconductor materials by the aerotaxy method, J. Aerosol Sci., 1998, 29(5–6): 737
CrossRef ADS Google scholar
[40]
K. Deppert, J. O. Bovin, M. H. Magnusson, J. O. Malm, C. Svensson, and L. Samuelson, Aerosol fabrication of nanocrystals of InP, Jpn. J. Appl. Phys., 1999, 38: 1056
CrossRef ADS Google scholar
[41]
N. Anttu and H. Q. Xu, Coupling of light into nanowire arrays and subsequent absorption, J. Nanosci. Technol., 2010, 10(11): 7183
[42]
X. Duan, J. Wang, and C. M. Lieber, Synthesis and optical properties of gallium arsenide nanowires, Appl. Phys. Lett., 2000, 76(9): 1116
CrossRef ADS Google scholar
[43]
X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature, 2001, 409(6816): 66
CrossRef ADS Google scholar
[44]
A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Hamad, E. Juban, A. P. Alivisatos, R. H. Wolters, C. C. Arnold, and J. R. Heath, Synthesis of size-selected, surfacepassivated InP nanocrystals, J. Phys. Chem., 1996, 100(17): 7212
CrossRef ADS Google scholar
[45]
M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, Continuous gasphase synthesis of nanowires with tunable properties, Nature, 2012, 492(7427): 90
CrossRef ADS Google scholar
[46]
S. H. Kim and M. R. Zachariah, Gas-phase growth of diameter-controlled carbon nanotubes, Mater. Lett., 2007, 61(10): 2079
CrossRef ADS Google scholar
[47]
U. Krishnamachari, M. Borgström, B. J. Ohlsson, N. Panev, L. Samuelson, W. Seifert, M. W. Larsson, and L. R. Wallenberg, Defect-free InP nanowires grown in [001] direction on InP (001), Appl. Phys. Lett., 2004, 85(11): 2077
CrossRef ADS Google scholar
[48]
To be published separately.
[49]
L. Samuelson, M. Heurlin, M. Magnusson, and K. Deppert, PCT patent application, 2011, WO/2011/142717
[50]
A. Wiedensohler, H. C. Hansson, I. Maximov, and L. Samuelson, Nanometer patterning of InP using aerosol and plasma etching techniques, Appl. Phys. Lett., 1992, 61(7): 837
CrossRef ADS Google scholar
[51]
I. Maximov, A. Gustafsson, H. C. Hansson, L. Samuelson, W. Seifert, and A. Wiedensohler, Fabrication of quantum dot structures using aerosol deposition and plasma etching techniques, J. Vac. Sci. Technol., 1993, 11(4): 748
CrossRef ADS Google scholar
[52]
K. Deppert, I. Maximov, L. Samuelson, H. C. Hansson, and A. Wiedensohler, Sintered aerosol masks for dry-etched quantum dots, Appl. Phys. Lett., 1994, 64(24): 3293
CrossRef ADS Google scholar
[53]
I. Maximov, K. Deppert, L. Montelius, L. Samuelson, S. Gray, M. Johansson, H. C. Hansson, and A. Wiedensohler, Characterization of InP/GaInAs nanometer sized columns produced by aerosol deposition and plasma etching, Mat. Res. Soc. Symp. Proc., 1994, 332: 513
CrossRef ADS Google scholar
[54]
I. Maximov, E.-L. Sarwe, M. Beck, K. Deppert, M. Graczyk, M. H. Magnusson, and L. Montelius, Fabrication of Si-based nanoimprint stamps with sub-20 nm features, Microelectr. Eng., 2002, 61–62: 449
CrossRef ADS Google scholar
[55]
B. A. Wacaser, K. A. Dick, Z. Zanolli, A. Gustafsson, K. Deppert, and L. Samuelson, Size-selected compound semiconductor quantum dots by nanoparticle conversion, Nanotechnology, 2007, 18(10): 105306
CrossRef ADS Google scholar
[56]
K. Watanabe, N. Koguchi, and Y. Gotoh, Fabrication of GaAs quantum dots by modified droplet epitaxy, Jpn. J Appl. Phys., 2000, 39: L79
CrossRef ADS Google scholar
[57]
R. S. Wagner and W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett., 1964, 4(5): 89
CrossRef ADS Google scholar
[58]
E. I. Givargizov, Fundamental aspects of VLS growth, J. Cryst. Growth, 1975, 31: 20
CrossRef ADS Google scholar
[59]
M. Yazawa, M. Koguchi, and K. Hiruma, Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates, Appl. Phys. Lett., 1991, 58(10): 1080
CrossRef ADS Google scholar
[60]
K. A. Dick, A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires, Prog. Cryst. Growth Charact. Mater., 2009, 54(3-4): 138
[61]
M. E. Messing, K. Hillerich, J. Bolinsson, K. Storm, J. Johansson, K. A. Dick, and K. Deppert, A comparative study of the effect of gold seed particle preparation method on nanowire growth, Nano Res., 2010, 3(7): 506
CrossRef ADS Google scholar
[62]
B. J. Ohlsson, M. T. Björk, M. H. Magnusson, K. Deppert, L. Samuelson, and L. R. Wallenberg, Size-, shape-, and position-controlled GaAs nano-whiskers, Appl. Phys. Lett., 2001, 79(20): 3335
CrossRef ADS Google scholar
[63]
M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, One-dimensional heterostructures in semiconductor nano-whiskers, Appl. Phys. Lett., 2002, 80(6): 1058
CrossRef ADS Google scholar
[64]
M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, One-dimensional steeplechase for electrons realized, Nano Lett., 2002, 2(2): 87
CrossRef ADS Google scholar
[65]
L. I. Samuelson and B. J. Ohlsson, United States patent, 2003, US7,335,908
[66]
L. E. Fröberg, B. A. Wacaser, J. B. Wagner, S. Jeppesen, B. J. Ohlsson, K. Deppert, and L. Samuelson, Transients in the formation of nanowire heterostructures, Nano Lett., 2008, 8(11): 3815
CrossRef ADS Google scholar
[67]
B. J. Ohlsson, M. T. Björk, A. I. Persson, C. Thelander, L. R. Wallenberg, M. H. Magnusson, K. Deppert, and L. Samuelson, Growth and characterization of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures, Physica E, 2002, 13(2-4): 1126
CrossRef ADS Google scholar
[68]
T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, Epitaxial III–V nanowires on silicon, Nano Lett., 2004, 4(10): 1987
CrossRef ADS Google scholar
[69]
L. I. Samuelson and T. M. I. Mårtensson, United States patent, 2009, US7,528,002
[70]
L. I. Samuelson and T. M. I. Mårtensson, United States patent, 2011, US7,960,260
[71]
L. Samuelson, J. Ohlsson, T. Mårtensson, and P. Svensson, United States patent, 2011, US8,084,337
[72]
A. I. Persson, M. W. Larsson, S. Stenström, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, Solid-phase diffusion mechanism for GaAs nanowire growth, Nat. Mater., 2004, 3(10): 677
CrossRef ADS Google scholar
[73]
J. Johansson, C. P. T. Svensson, T. Mårtensson, L. Samuelson, and W. Seifert, Mass transport model for semiconductor nanowire growth, J. Phys. Chem. B, 2005, 109(28): 13567
CrossRef ADS Google scholar
[74]
L. E. Fröberg, W. Seifert, and J. Johansson, Diameterdependent growth rate of InAs nanowires, Phys. Rev. B, 2007, 76(15): 153401
CrossRef ADS Google scholar
[75]
P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires, Nat. Nanotechnol., 2009, 4(1): 50
CrossRef ADS Google scholar
[76]
J. Johansson, K. A. Dick, P. Caroff, M. E. Messing, J. Bolinsson, K. Deppert, and L. Samuelson, Diameter dependence of the wurtzite-zinc blende transition in InAs nanowires, J. Phys. Chem. C, 2010, 114(9): 3837
CrossRef ADS Google scholar
[77]
K. A. Dick, J. Bolinsson, B. M. Borg, and J. Johansson, Controlling the abruptness of axial heterojunctions in III–V nanowires: Beyond the reservoir effect, Nano Lett., 2012, 12(6): 3200
CrossRef ADS Google scholar
[78]
M. Ek, B. M. Borg, J. Johansson, and K. A. Dick, Diameter limitation in growth of III-Sb-containing nanowire heterostructures, ACS Nano, 2013, 7(4): 3668
CrossRef ADS Google scholar
[79]
M. A. Verheijen, G. Immink, T. de Smet, M. T. Borgström, and E. P. A. M. Bakkers, Growth kinetics of heterostructured GaP-GaAs nanowires, J. Am. Chem. Soc., 2006, 128(4): 1353
CrossRef ADS Google scholar
[80]
H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, X. Zhang, Y. N. Guo, and J. Zou, Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process, Nano Lett., 2007, 7(4): 921
CrossRef ADS Google scholar
[81]
L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature, 2002, 420(6911): 57
CrossRef ADS Google scholar
[82]
H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, M. A. Fickenscher, S. Perera, T. B. Hoang, L. M. Smith, H. E. Jackson, J. M. Yarrison-Rice, X. Zhang, and J. Zou, Unexpected benefits of rapid growth rate for III–V nanowires, Nano Lett., 2009, 9(2): 695
CrossRef ADS Google scholar
[83]
M. Suhara, C. Nagao, H. Honji, Y. Miyamoto, K. Furuya, and R. Takemura, Atomically flat OMVPE growth of GaInAs and InP observed by AFM for level narrowing in resonant tunneling diodes, J. Cryst. Growth, 1997, 179(1–2): 18
CrossRef ADS Google scholar
[84]
G. B. Stringfellow, Organometallic Vapor Phase Epitaxy, 2nd Ed., San Diego: Academic Press, 1999
[85]
M. T. Borgström, J. Wallentin, J. Trägårdh, P. Ramvall, M. Ek, L. R. Wallenberg, L. Samuelson, and K. Deppert, In Situ etching for total control over axial and radial nanowire growth, Nano Res., 2010, 3(4): 264
CrossRef ADS Google scholar
[86]
J. Wallentin, M. E. Messing, E. Trygg, L. Samuelson, K. Deppert, and M. T. Borgström, Growth of doped InAsyP1-y nanowires with InP shells, J. Cryst. Growth, 2011, 331(1): 8
CrossRef ADS Google scholar
[87]
D. Jacobsson, J. M. Persson, D. Kriegner, T. Etzelstorfer, J. Wallentin, J. B. Wagner, J. Stangl, L. Samuelson, K. Deppert, and M. T. Borgström, Particle-assisted GaxIn1-xP nanowire growth for designed bandgap structures, Nanotechnology, 2012, 23(24): 245601
CrossRef ADS Google scholar
[88]
J. Wallentin, J. M. Persson, J. B. Wagner, L. Samuelson, K. Deppert, and M. T. Borgström, High-performance single nanowire tunnel diodes, Nano Lett., 2010, 10(3): 974
CrossRef ADS Google scholar
[89]
M. T. Borgström, J. Wallentin, K. Kawaguchi, L. Samuelson, and K. Deppert, Dynamics of extremely anisotropic etching of InP nanowires by HCl, Chem. Phys. Lett., 2011, 502(4–6): 222
CrossRef ADS Google scholar
[90]
G. L. Tuin, M. T. Borgström, J. Trägårdh, M. Ek, L. R.Wallenberg, L. Samuelson, and M. E. Pistol, Valence band splitting in wurtzite InP nanowires observed by photoluminescence and photoluminescence excitation spectroscopy, Nano Res., 2011, 4(2): 159
CrossRef ADS Google scholar
[91]
J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgström, Degenerate p-doping of InP nanowires for large area tunnel diodes, Appl. Phys. Lett., 2011, 99(25): 253015
CrossRef ADS Google scholar
[92]
J. Wallentin and M. T. Borgström, Doping of semiconductor nanowires, J. Mater. Res., 2011, 26(17): 2142
CrossRef ADS Google scholar
[93]
J. Eskola, J. A. Seetula, and R. S. Timonen, Kinetics of the CH3+HCl/DCl → CH4/CH3D+Cl and CD3+HCl/DCl → CD3H/CD4+Cl reactions: An experimental H atom tunneling investigation, Chem. Phys., 2006, 331(1): 26
CrossRef ADS Google scholar
[94]
M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, Nanowires with promise for photovoltaics, IEEE J. Sel. Top. Quantum Electron., 2011, 17(4): 1050
CrossRef ADS Google scholar
[95]
K. A. Dick, K. Deppert, L. S. Karlsson, M. W. Larsson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Directed growth of branched nanowire structures, MRS Bull., 2007, 32(02): 127
CrossRef ADS Google scholar
[96]
K. A. Dick, K. Deppert, M. W. Larsson, T. Mårtensson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Synthesis of branched “nanotrees” by controlled seeding of multiple branching events, Nat. Mater., 2004, 3(6): 380
CrossRef ADS Google scholar
[97]
L. I. Samuelson and K. W. Deppert, United States patent, 2010, US7,662,706
[98]
L. I. Samuelson and K. W. Deppert, United States patent, 2010, US7,875,536
[99]
K. Bayer, K. A. Dick, T. J. Krinke, and K. Deppert, Targeted deposition of Au aerosol nanoparticles on vertical nanowires for the creation of nanotrees, J. Nanopart. Res., 2007, 9(6): 1211
CrossRef ADS Google scholar
[100]
K. A. Dick, K. Deppert, M. W. Larsson, W. Seifert, L. Reine Wallenberg, and L. Samuelson, Height-controlled nanowire branches on nanotrees using a polymer mask, Nanotechnology, 2007, 18(3): 035601
CrossRef ADS Google scholar
[101]
K. A. Dick, K. Deppert, L. S. Karlsson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Position-controlled interconnected InAs nanowire networks, Nano Lett., 2006, 6(12): 2842
CrossRef ADS Google scholar
[102]
K. A. Dick, Z. Geretovszky, A. Mikkelsen, L. S. Karlsson, E. Lundgren, J. O. Malm, J. N. Andersen, L. Samuelson, W. Seifert, B. A.Wacaser, and K. Deppert, Improving InAs nanotree growth with composition-controlled Au-In nanoparticles, Nanotechnology, 2006, 17(5): 1344
CrossRef ADS Google scholar
[103]
T. Junno, S. Anand, K. Deppert, L. Montelius, and L. Samuelson, Contact mode atomic force microscopy imaging of nanometer-sized particles, Appl. Phys. Lett., 1995, 66(24): 3295
CrossRef ADS Google scholar
[104]
T. Junno, K. Deppert, L. Montelius, and L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett., 1995, 66(26): 3627
CrossRef ADS Google scholar
[105]
T. Junno, S. B. Carlsson, H. Q. Xu, L. Montelius, and L. Samuelson, Fabrication of quantum devices by angstromlevel manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett., 1998, 72: 548
CrossRef ADS Google scholar
[106]
T. Junno, M. H. Magnusson, S. B. Carlsson, K. Deppert, J. O. Malm, L. Montelius, and L. Samuelson, Single-electron devices via controlled assembly of designed nanoparticles, Microelectron. Eng., 1999, 47(1–4): 179
CrossRef ADS Google scholar
[107]
C. Thelander, M. H. Magnusson, and K. Deppert, L. Samuelson, P. R. Poulsen, J. Nygård, and J. Borggreen, Gold nanoparticle single-electron transistor with carbon nanotube leads, Appl. Phys. Lett., 2001, 79: 2016
CrossRef ADS Google scholar
[108]
T. Junno, S. B. Carlsson, H. Q. Xu, L. Samuelson, A. O. Orlov, and G. L. Snider, Single-electron tunneling effects in a metallic double dot device, Appl. Phys. Lett., 2002, 80(4): 667
CrossRef ADS Google scholar
[109]
L. I. Samuelson and K. W. Deppert, United States patent, 2004, US6,744,065
[110]
S. K. Lee, C. M. Zetterling, M. Östling, I. Åberg, M. H. Magnusson, K. Deppert, L. E. Wernersson, L. Samuelson, and A. Litwin, Reduction of the Schottky barrier height on silicon carbide using Au nano-particles, Solid-State Electron., 2002, 46(9): 1433
CrossRef ADS Google scholar
[111]
L. E. Wernersson, A. Litwin, L. Samuelson, and W. Seifert, Controlled Carrier Depletion around Nano-Scale Metal Discs Embedded in GaAs, Jpn. J. Appl. Phys., 1997, 36: L1628
CrossRef ADS Google scholar
[112]
L. E. Wernersson, A. Litwin, L. Samuelson, and H. Xu, Operation of a ballistic heterojunction permeable base transistor, IEEE Trans. Electron. Dev., 1997, 44(11): 1829
CrossRef ADS Google scholar
[113]
L. E. Wernersson, M. Borgström, B. Gustafson, A. Gustafsson, L. Jarlskog, J. O. Malm, A. Litwin, L. Samuelson, and W. Seifert, MOVPE overgrowth of metallic features for realisation of 3D metal-semiconductor quantum devices, J. Cryst. Growth, 2000, 221(1–4): 704
CrossRef ADS Google scholar
[114]
I. Åberg, K. Deppert, M. H. Magnusson, I. Pietzonka, W. Seifert, L. E. Wernersson, and L. Samuelson, Nanoscale tungsten aerosol particles embedded in GaAs, Appl. Phys. Lett., 2002, 80(16): 2976
CrossRef ADS Google scholar
[115]
H. Fissan, M. K. Kennedy, T. J. Krinke, and F. E. Kruis, J. Nanopart. Res., 2003, 5(3–4): 299
CrossRef ADS Google scholar
[116]
C. Busch, G. Schierning, R. Theissmann, A. Nedic, F. E. Kruis, and R. Schmechel, Thin-film transistors with a channel composed of semiconducting metal oxide nanoparticles deposited from the gas phase, J. Nanopart. Res., 2012, 14(6): 888
CrossRef ADS Google scholar
[117]
K. W. Deppert, C. M. H. Magnusson, L. I. Samuelson, and T. J. Krinke, United States patent, 2007, US7,223,444
[118]
M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Nanowire resonant tunneling diodes, Appl. Phys. Lett., 2002, 81(23): 4458
CrossRef ADS Google scholar
[119]
L. Samuelson, C. Thelander, M. T. Björk, M. Borgström, K. Deppert, K. A. Dick, A. E. Hansen, T. Mårtensson, N. Panev, A. I. Persson, W. Seifert, N. Sköld, M. W. Larsson, and L. R. Wallenberg, Semiconductor nanowires for 0D and 1D physics and applications, Physica E, 2004, 25(2–3): 313
CrossRef ADS Google scholar
[120]
C. Thelander, T. Mårtensson, M. T. Björk, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Single-electron transistors in heterostructure nanowires, Appl. Phys. Lett., 2003, 83(10): 2052
CrossRef ADS Google scholar
[121]
M. T. Björk, C. Thelander, A. E. Hansen, L. E. Jensen, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Few-electron quantum dots in nanowires, Nano Lett., 2004, 4(9): 1621
CrossRef ADS Google scholar
[122]
M. T. Björk, A. Fuhrer, A. E. Hansen, M. W. Larsson, L. E. Fröberg, and L. Samuelson, Tunable effective g factor in InAs nanowire quantum dots, Phys. Rev. B, 2005, 72(20): 201307
CrossRef ADS Google scholar
[123]
A. Fuhrer, L. E. Fröberg, J. N. Pedersen, M. W. Larsson, A. Wacker, M. E. Pistol, and L. Samuelson, Few electron double quantum dots in InAs/InP nanowire heterostructures, Nano Lett., 2007, 7(2): 243
CrossRef ADS Google scholar
[124]
A. Fuhrer, C. Fasth, and L. Samuelson, Single electron pumping in InAs nanowire double quantum dots, Appl Phys. Lett., 2007, 91(5): 052109
CrossRef ADS Google scholar
[125]
C. Fasth, A. Fuhrer, L. Samuelson, V. N. Golovach, and D. Loss, Direct measurement of the spin–orbit interaction in a two-electron InAs nanowire quantum dot, Phys. Rev. Lett., 2007, 98(26): 266801
CrossRef ADS Google scholar
[126]
J. Bao, D. C. Bell, F. Capasso, J. B.Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, Optical properties of rotationally twinned InP nanowire heterostructures, Nano Lett., 2008, 8(3): 836
CrossRef ADS Google scholar
[127]
N. Akopian, G. Patriarche, L. Liu, J. C. Harmand, and V. Zwiller, Crystal phase quantum dots, Nano Lett., 2010, 10(4): 1198
CrossRef ADS Google scholar
[128]
C. Weber, A. Fuhrer, C. Fasth, G. Lindwall, L. Samuelson, and A. Wacker, Probing confined phonon modes by transport through a nanowire double quantum dot, Phys. Rev. Lett., 2010, 104(3): 036801
CrossRef ADS Google scholar
[129]
C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. Gösele, and L. Samuelson, Nanowire-based one-dimensional electronics, Mater. Today, 2006, 9(10): 28
CrossRef ADS Google scholar
[130]
C. Thelander, C. Rehnstedt, L. E. Fröberg, E. Lind, T. Mårtensson, P. Caroff, T. Löwgren, B. J. Ohlsson, L. Samuelson, and L. E. Wernersson, Development of a vertical wrap-gated InAs FET, IEEE Trans. Electron. Dev., 2008, 55(11): 3030
CrossRef ADS Google scholar
[131]
C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, Monolithic GaAs/InGaP nanowire light emitting diodes on silicon, Nanotechnology, 2008, 19(30): 305201
CrossRef ADS Google scholar
[132]
L. I. Samuelson, P. Svensson, J. Ohlsson, and T. Löwgren, United States patent, 2011, US8,049,203
[133]
L. I. Samuelson, B. Pedersen, and B. J. Ohlsson, United States patent, 2012, US8,183,587
[134]
B. Pedersen, L. Samuelson, J. Ohlsson, and P. Svensson, United States patent, 2012, US8,227,817
[135]
B. M. Kayes, H. A. Atwater, and N. S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys., 2005, 97(11): 114302
CrossRef ADS Google scholar
[136]
M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, Axial InP nanowire tandem junction grown on a silicon substrate, Nano Lett., 2011, 11(5): 2028
CrossRef ADS Google scholar
[137]
L. Samuelson, M. Magnusson, and F. Capasso, United States patent application, US 2010/0186809
[138]
M. Borgström, M. Heurlin, and S. Fält, United States patent application, US 2012/0199187
[139]
N. Anntu and H. Q. Xu, Coupling of light into nanowire arrays and subsequent absorption, J. Nanosci. Nanotechnol., 2010, 10(11): 7183
CrossRef ADS Google scholar
[140]
J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit, Science, 2013, 339(6123): 1057
CrossRef ADS Google scholar
Funding
 

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1209 KB)

1088

Accesses

17

Citations

Detail

Sections
Recommended

/