Temporal inequalities for sequential multi-time actions in quantum information processing

Marek Żukowski

Front. Phys. ›› 2014, Vol. 9 ›› Issue (5) : 629 -633.

PDF (164KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (5) : 629 -633. DOI: 10.1007/s11467-013-0400-2
RESEARCH ARTICLE

Temporal inequalities for sequential multi-time actions in quantum information processing

Author information +
History +
PDF (164KB)

Abstract

A new kind of temporal inequalities are discussed, which apply to algorithmic processes, involving a finite memory processing unit. They are an alternative to the Leggett–Grag ones, as well as to the modified ones by Brukner et al. If one considers comparison of quantum and classical processes involving systems of finite memory (of the same capacity in both cases), the inequalities give a clear message why we can expect quantum speed-up. In a classical process one always has clearly defined values of possible measurements, or in terms of the information processing language, if we have a sequential computations of some function depending on data arriving at each step on an algorithm, the function always has a clearly defined value. In the quantum case only the final value, after the end of the algorithm, is defined. All intermediate values, in agreement with Bohr’s complementarity, cannot be ascribed a definite value.

Keywords

temporal inequalities / quantum information

Cite this article

Download citation ▾
Marek Żukowski. Temporal inequalities for sequential multi-time actions in quantum information processing. Front. Phys., 2014, 9(5): 629-633 DOI:10.1007/s11467-013-0400-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Č. Brukner, S. Taylor, S. Cheung, and V. Vedral, Quantum entanglement in time, arXiv: quant-ph/0402127, 2004

[2]

A. J. Leggett and A. Garg, Quantum Mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett., 1985, 54(9): 857

[3]

A. J. Leggett, Testing the limits of quantum mechanics: Motivation, state of play, prospects, J. Phys.: Condens. Matter, 2002, 14(15): R415

[4]

A. J. Leggett, Realism and the physical world, Rep. Prog. Phys., 2008, 71(2): 022001

[5]

M. Żukowski, Quantum Speedup and Temporal Inequalities for Sequential Actions, in: Computable Universe, edited by H. Zenil, World Scientific/Imperial College, Singapore, London, 2012

[6]

The author is indebted to the Anonymous Referee for pointing that finite memory is the assumption, not dependence on initial state.

[7]

M. Kleinmann, O. Gühne, J. R. Portillo, J. A. Larsson, and A. Cabello, Memory cost of quantum contextuality, New J Phys., 2011, 13(11): 113011

[8]

P. Trojek, Ch. Schmid, M. Bourennane, Č. Brukner, M. Żukowski, and H. Weinfurter, Experimental quantum communication complexity, Phys. Rev. A, 2005, 72(5): 050305(R)

[9]

Č. Brukner, M. Żukowski, J. W. Pan, and A. Zeilinger, Bell’s inequality and quantum communication complexity, Phys. Rev. Lett., 2004, 92(12): 127901

[10]

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, Multiphoton entanglement and interferometry, Rev. Mod. Phys., 2012, 84(2): 777

[11]

A. Shafiee and M. Golshani, Single-particle Bell-type inequality, Annales Fond. Broglie, 2003, 28: 105

[12]

F. Morikoshi, Informationtheoretic temporal Bell inequality and quantum computation, Phys. Rev. A, 2006, 73(5): 052308

[13]

J. Kofler, Quantum violation of macroscopic realism and the transition to classical physics, Ph. D. Thesis, arXiv: 0812.0238, 2008

[14]

J. Koflerand Č. Brukner, The conditions for quantum violation of macroscopic realism, Phys. Rev. Lett., 2008, 101(9): 090403

[15]

J. Kofler, N. Buric, and Č. Brukner, Macroscopic realism and spatiotemporal continuity, arXiv: 0906.4465, 2009

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (164KB)

958

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/