[1] D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit,
Nat. Photonics , 2010, 4(2): 83
10.1038/nphoton.2009.282[2] M. L. Brongersma and V. M. Shalaev, Applied physics the case for plasmonics,
Science , 2010, 328(5977): 440
10.1126/science.1186905[3] S. Lal, S. Link, and N. J. Halas, Nano-optics from sensing to waveguiding,
Nat. Photonics , 2007, 1(11): 641
10.1038/nphoton.2007.223[4] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS),
Phys. Rev. Lett. , 1997, 78(9): 1667
10.1103/PhysRevLett.78.1667[5] S. M. Nie and S. R. Emery, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,
Science , 1997, 275(5303): 1102
10.1126/science.275.5303.1102[6] H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface-enhanced Raman scattering,
Phys. Rev. Lett. , 1999, 83(21): 4357
10.1103/PhysRevLett.83.4357[7] H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surfaceenhanced Raman scattering,
Phys. Rev. E , 2000, 62(3): 4318
10.1103/PhysRevE.62.4318[8] S. P. Zhang, K. Bao, N. J. Halas, H. X. Xu, and P. Nordlander, Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed,
Nano Lett. , 2011, 11(4): 1657
10.1021/nl200135r[9] K. M. Mayer and J. H. Hafner, Localized surface plasmon resonance sensors,
Chem. Rev. , 2011, 111(6): 3828
10.1021/cr100313v[10] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Demonstration of a spaser-based nanolaser,
Nature , 2009, 460(7259): 1110
10.1038/nature08318[11] D. J. Bergman and M. I. Stockman, Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,
Phys. Rev. Lett. , 2003, 90(2): 027402
10.1103/PhysRevLett.90.027402[12] N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, Lasing spaser,
Nat. Photonics , 2008, 2(6): 351
10.1038/nphoton.2008.82[13] N. Fang, H. Lee, C. Sun, and X. Zhang, Sub-diffractionlimited optical imaging with a silver superlens,
Science , 2005, 308(5721): 534
10.1126/science.1108759[14] I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Magnifying superlens in the visible frequency range,
Science , 2007, 315(5819): 1699
10.1126/science.1138746[15] N. Engheta, A. Salandrino, and A. Alu, Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,
Phys. Rev. Lett. , 2005, 95(9): 095504
10.1103/PhysRevLett.95.095504[16] D. Pacifici, H. J. Lezec, and H. A. Atwater, All-optical modulation by plasmonic excitation of CdSe quantum dots,
Nat. Photonics , 2007, 1(7): 402
10.1038/nphoton.2007.95[17] H.Wei, Z. X.Wang, X. R.Tian, M. Kall, and H. X. Xu, Cascaded logic gates in nanophotonic plasmon networks,
Nat. Commun. , 2011, 2: 387
10.1038/ncomms1388[18] K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, Revealing the quantum regime in tunnelling plasmonics,
Nature , 2012, 491(7425): 574
10.1038/nature11653[19] Z. Jacob and V. M. Shalaev, Plasmonics goes quantum,
Science , 2011, 334(6055): 463
10.1126/science.1211736[20] J. N. Chen, M. Badioli, P.Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. G.de Abajo, R. Hillenbrand, and F. H. L.Koppens, Optical nano-imaging of gate-tunable graphene plasmons,
Nature , 2012, 487: 77
[21] Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C.Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging,
Nature , 2012, 487: 82
[22] L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, Graphene plasmonics for tunable terahertz metamaterials,
Nat. Nanotechnol. , 2011, 6(10): 630
10.1038/nnano.2011.146[23] K. A. Willets, Plasmon point spread functions: How do we model plasmon-mediated emission processes?
Front. Phys. , 2014, 9(1): 3
10.1007/s11467-013-0356-2[24] Z. L. Zhang, L. Chen, S. X. Sheng, M. T. Sun, H. R. Zheng, K. Q. Chen, and H. X. Xu, High-vacuum tip enhanced Raman spectroscopy,
Front. Phys. , 2014, 9(1): 17
10.1007/s11467-013-0364-2[25] Z. H. Kim, Single-molecule surface-enhanced Raman scattering: Current status and future perspective,
Front. Phys. , 2014, 9(1): 25
10.1007/s11467-013-0338-4[26] Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing,
Front. Phys. , 2014, 9(1): 31
10.1007/s11467-013-0347-3[27] A. Ono, M. Kikawada, W. Inami, and Y. Kawata, Surface plasmon coupled fluorescence in deep-ultraviolet excitation by Kretschmann configuration,
Front. Phys. , 2014, 9(1): 60
10.1007/s11467-013-0385-x[28] Y. Z. He, J. X. Fu, and Y. P. Zhao, Oblique angle deposition and its applications in plasmonics,
Front. Phys. , 2014, 9(1): 47
10.1007/s11467-013-0357-1[29] L. P. Xia, Z. Yang, S. Y. Yin, W. R. Guo, J. L. Du, and C. L. Du, Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres,
Front. Phys. , 2014, 9(1): 64
10.1007/s11467-013-0345-5