Studying bi-partite entangled state representations via the integration over ket–bra operators in Q-ordering or P-ordering

Hong-Yi Fan , Sen-Yue Lou

Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 460 -464.

PDF (176KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 460 -464. DOI: 10.1007/s11467-013-0397-6
RESEARCH ARTICLE

Studying bi-partite entangled state representations via the integration over ket–bra operators in Q-ordering or P-ordering

Author information +
History +
PDF (176KB)

Abstract

For two particles’ relative position and total momentum we have introduced the entangled state representation |η, and its conjugate state |ξ. In this work, for the first time, we study them via the integration over ket–bra operators in Q-ordering or P-ordering, where Q-ordering means all Qs are to the left of all Ps and P-ordering means all Ps are to the left of all Qs. In this way we newly derive P-ordered (or Q-ordered) expansion formulas of the two-mode squeezing operator which can show the squeezing effect on both the two-mode coordinate and momentum eigenstates. This tells that not only the integration over ket–bra operators within normally ordered, but also within Pordered (or Q-ordered) are feasible and useful in developing quantum mechanical representation and transformation theory.

Keywords

integration over ket–bra operators / Q-ordering / P-ordering / entangled state representation

Cite this article

Download citation ▾
Hong-Yi Fan, Sen-Yue Lou. Studying bi-partite entangled state representations via the integration over ket–bra operators in Q-ordering or P-ordering. Front. Phys., 2014, 9(4): 460-464 DOI:10.1007/s11467-013-0397-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev., 1935, 47(10): 777

[2]

H. Y. Fanand J. R. Klauder, Eigenvectors of two particles’ relative position and total momentum., Phys. Rev. A, 1994, 49(2): 704

[3]

H. Y. Fanand Y. Fan, Dual eigenkets of the Susskind–Glogower phase operator, Phys. Rev. A, 1996, 54(6): 5295

[4]

P. A. M.Dirac, The Principles of Quantum Mechanics, Oxford: Clarendon Press, 1930

[5]

H. Y. Fanand J. Zhou, Coherent state and normal ordering method for transiting Hermite polynomials to Laguerre polynomials, Science China: Physics, Mechanics & Astronomy, 2012, 55(4): 605

[6]

H. Y. Fan, New fundamental quantum mechanical operatorordering identities for the coordinate and momentum operators, Science China: Physics, Mechanics & Astronomy, 2012, 55(5): 762

[7]

H. Y. Fanand S. Y. Lou, Science China: Physics, Mechanics and Astronomy, 2013 (to appear)

[8]

H. Weyl, Quantenmechanik und gruppentheorie, Z. Phys., 1927, 46(1-2): 1

[9]

E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 1932, 40(5): 749

[10]

H. Y. Fan, S. Wang, and L. Y. Hu, Evolution of the singlemode squeezed vacuum state in amplitude dissipative channel, Front. Phys.

[11]

H. Y. Fan, Squeezed states: Operators for two types of one- and two-mode squeezing transformations, Phys. Rev. A, 1990, 41(3): 1526

[12]

H. Y. Fan, H. L. Lu, and Y. Fan, Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations, Ann. Phys., 2006, 321(2): 480

[13]

H. Y. Fan, Operator ordering in quantum optics theory and the development of Dirac’s symbolic method, J. Opt. B, 2003, 5(4): R147

[14]

H. Y. Fan, H. C. Yuan, and N. Q. Jiang, Deriving new operator identities by alternately using normally, antinormally, and Weyl ordered integration technique, Science China: Phys Mechanics & Astronomy, 2010, 53(9): 1626

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (176KB)

1016

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/