An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems

C. S. Hofmann, G. Günter, H. Schempp, N. L. M. Müller, A. Faber, H. Busche, M. Robert-de-Saint-Vincent, S. Whitlock, M. Weidemüller

PDF(1076 KB)
PDF(1076 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (5) : 571-586. DOI: 10.1007/s11467-013-0396-7
REVIEW ARTICLE
REVIEW ARTICLE

An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems

Author information +
History +

Abstract

Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose–Einstein condensation transition. An electrode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg–Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre-structure an atomic gas prior to its spontaneous evolution into an ultracold plasma. Second, hybrid states of photons and atoms called dark-state polaritons are studied. By looking at the statistical distribution of Rydberg excited atoms we reveal correlations between dark-state polaritons. These experiments will ultimately provide a deeper understanding of many-body phenomena in strongly-interacting regimes, including the study of strongly-coupled plasmas and interfaces between atoms and light at the quantum level.

Graphical abstract

Keywords

ultracold Rydberg gases / ultracold plasmas / Bose–Einstein condensation / atom–light interactions / many-body interactions

Cite this article

Download citation ▾
C. S. Hofmann, G. Günter, H. Schempp, N. L. M. Müller, A. Faber, H. Busche, M. Robert-de-Saint-Vincent, S. Whitlock, M. Weidemüller. An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems. Front. Phys., 2014, 9(5): 571‒586 https://doi.org/10.1007/s11467-013-0396-7

References

[1]
M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys., 2010, 82(3): 2313
CrossRef ADS Google scholar
[2]
D. Comparat and P. Pillet, Dipole blockade in a cold Rydberg atomic sample, J. Opt. Soc. Am. B, 2010, 27(6): A208
CrossRef ADS Google scholar
[3]
J. D. Pritchard, K. J. Weatherill, and C. S. Adams, Nonlinear optics using cold Rydberg atoms; Annual Review of Cold Atoms and Molecule chapter 8, Singapore: World Scientific, 2013: 301-350
CrossRef ADS Google scholar
[4]
F. Robicheaux and J. Hernández, Many-body wave function in a dipole blockade configuration, Phys. Rev. A, 2005, 72(6): 063403
CrossRef ADS Google scholar
[5]
H. Weimer, R. Löw, T. Pfau, and H. P. Büchler, Quantum critical behavior in strongly interacting Rydberg gases, Phys. Rev. Lett., 2008, 101(25): 250601
CrossRef ADS Google scholar
[6]
A. Schwarzkopf, R. E. Sapiro, and G. Raithel, Imaging spatial correlations of Rydberg excitations in cold atom clouds, Phys. Rev. Lett., 2011, 107(10): 103001
CrossRef ADS Google scholar
[7]
P. Schauß*, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Observation of spatially ordered structures in a two-dimensional Rydberg gas, Nature, 2012, 491(7422): 87
CrossRef ADS Google scholar
[8]
C. Ates and I. Lesanovsky, Entropic enhancement of spatial correlations in a laser-driven Rydberg gas, Phys. Rev. A, 2012, 86(1): 013408
CrossRef ADS Google scholar
[9]
D. Petrosyan, M. Höning, and M. Fleischhauer, Spatial correlations of Rydberg excitations in optically driven atomic ensembles, Phys. Rev. A, 2013, 87(5): 053414
CrossRef ADS Google scholar
[10]
T. Pohl, E. Demler, and M. D. Lukin, Dynamical crystallization in the dipole blockade of ultracold atoms, Phys. Rev. Lett., 2010, 104(4): 043002
CrossRef ADS Google scholar
[11]
J. Schachenmayer, I. Lesanovsky, A. Micheli, and A. J. Daley, Dynamical crystal creation with polar molecules or Rydberg atoms in optical lattices, New J. Phys., 2010, 12(10): 103044
CrossRef ADS Google scholar
[12]
R. M. W. van Bijnen, S. Smit, K. A. H. van Leeuwen, E. J. D. Vredenbregt, and S. J. J. M. F. Kokkelmans, Adiabatic formation of Rydberg crystals with chirped laser pulses, J. Phys. B: At. Mol. Opt. Phys., 2011, 44(18): 184008
CrossRef ADS Google scholar
[13]
L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose–Einstein condensation in trapped dipolar gases, Phys. Rev. Lett., 2000, 85(9): 1791
CrossRef ADS Google scholar
[14]
G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, Strongly correlated gases of Rydberg-dressed atoms: Quantum and classical dynamics, Phys. Rev. Lett., 2010, 104(22): 223002
CrossRef ADS Google scholar
[15]
N. Henkel, R. Nath, and T. Pohl, Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose–Einstein condensates, Phys. Rev. Lett., 2010, 104(19): 195302
CrossRef ADS Google scholar
[16]
N. Henkel, F. Cinti, P. Jain, G. Pupillo, and T. Pohl, Supersolid vortex crystals in Rydberg-dressed Bose–Einstein condensates, Phys. Rev. Lett., 2012, 108(26): 265301
CrossRef ADS Google scholar
[17]
M. Robert-de-Saint-Vincent, C. S. Hofmann, H. Schempp, G. Günter, S. Whitlock, and M. Weidemüller, Spontaneous avalanche ionization of a strongly blockaded Rydberg gas, Phys. Rev. Lett., 2013, 110(4): 045004
CrossRef ADS Google scholar
[18]
G. Bannasch, T. C. Killian, and T. Pohl, Strongly coupled plasmas via Rydberg blockade of cold atoms, Phys. Rev. Lett., 2013, 110(25): 253003
CrossRef ADS Google scholar
[19]
Y. O. Dudin and A. Kuzmich, Strongly interacting Rydberg excitations of a cold atomic gas, Science, 2012, 336(6083): 887
CrossRef ADS Google scholar
[20]
T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, Quantum nonlinear optics with single photons enabled by strongly interacting atoms, Nature, 2012, 488(7409): 57
CrossRef ADS Google scholar
[21]
D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Storage and control of optical photons using Rydberg polaritons, Phys. Rev. Lett., 2013, 110(10): 103001
CrossRef ADS Google scholar
[22]
C. S. Hofmann, G. Günter, H. Schempp, M. Robertde-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, Sub-poissonian statistics of Rydberginteracting dark-state polaritons, Phys. Rev. Lett., 2013, 110(20): 203601
CrossRef ADS Google scholar
[23]
S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, Nonlocal nonlinear optics in cold Rydberg gases, Phys. Rev. Lett., 2011, 107(15): 153001
CrossRef ADS Google scholar
[24]
W. Ketterle, D. Durfee, and D. Stamper-Kurn, Bose–Einstein Condensation in Atomic Gases: Proceedings of the International School of Physics “Enrico Fermi” Course CXI chapter Making, probing and understanding Bose–Einstein condensates, IOS Press, 1999: 67-176
[25]
W. Ketterle and M. W. Zwierlein, Ultra-Cold Fermi Gases: Proceedings of the International School of Physics “Enrico Fermi”, Course ClXIV chapter Making, probing and understanding ultracold Fermi gases, Amsterdam: IOS Press, 2008: 95-287
[26]
R. Löw, H. Weimer, J. Nipper, J. B. Balewski, B. Butscher, H. P. Büchler, and T. Pfau, An experimental and theoretical guide to strongly interacting Rydberg gases, J. Phys. B: At. Mol. Opt. Phys., 2012, 45(11): 113001
CrossRef ADS Google scholar
[27]
H. Saßmannshausen, F. Merkt, and J. Deiglmayr, Highresolution spectroscopy of Rydberg states in an ultracold cesium gas, Phys. Rev. A, 2013, 87(3): 032519
CrossRef ADS Google scholar
[28]
M. S. O’Sullivan and B. P. Stoicheff, Scalar polarizabilities and avoided crossings of high Rydberg states in Rb, Phys. Rev. A, 1985, 31(4): 2718
CrossRef ADS Google scholar
[29]
I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. Entin, Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n≤80, Phys. Rev. A, 2009, 79(5): 052504
CrossRef ADS Google scholar
[30]
T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, and P. Pillet, Dipole blockade at Förster resonances in high resolution laser excitation of Rydberg states of cesium atoms, Phys. Rev. Lett., 2006, 97(8): 083003
CrossRef ADS Google scholar
[31]
S. Westermann, T. Amthor, A. L. de Oliveira, J. Deiglmayr, M. Reetz-Lamour, and M. Weidemüller, Dynamics of resonant energy transfer in a cold Rydberg gas, Eur. Phys. J. D, 2006, 40(1): 37
CrossRef ADS Google scholar
[32]
I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M. Entin, Observation of the Stark-tuned Förster resonance between two Rydberg atoms, Phys. Rev. Lett., 2010, 104(7): 073003
CrossRef ADS Google scholar
[33]
J. Nipper, J. B. Balewski, A. T. Krupp, S. Hofferberth, R. Löw, and T. Pfau, Atomic pair-state interferometer: Controlling and measuring an interaction-induced phase shift in Rydberg-atom pairs, Phys. Rev. X, 2012, 2(3): 031011
[34]
J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, and P. Pillet, Observation of a resonant four-body interaction in cold cesium Rydberg atoms, Phys. Rev. Lett., 2012, 108(2): 023005
CrossRef ADS Google scholar
[35]
O. Mülken, A. Blumen, T. Amthor, C. Giese, M. Reetz-Lamour, and M. Weidemüller, Survival probabilities in coherent exciton transfer with trapping, Phys. Rev. Lett., 2007, 99(9): 090601
CrossRef ADS Google scholar
[36]
K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. Walraven, Two-dimensional magneto-optical trap as a source of slow atoms, Phys. Rev. A, 1998, 58(5): 3891
CrossRef ADS Google scholar
[37]
J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Y. Ovchinnikov, and T. Pfau, Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap, Phys. Rev. A, 2002, 66(2): 023410
CrossRef ADS Google scholar
[38]
J. Catani, P. Maioli, L. D. Sarlo, F. Minardi, and M. Inguscio, Intense slow beams of bosonic potassium isotopes, Phys. Rev. A, 2006, 73(3): 033415
CrossRef ADS Google scholar
[39]
S. Chaudhuri, S. Roy, and C. S. Unnikrishnan, Realization of an intense cold Rb atomic beam based on a two-dimensional magneto-optical trap: Experiments and comparison with simulations, Phys. Rev. A, 2006, 74(2): 023406
CrossRef ADS Google scholar
[40]
R. Dubessy, K. Merloti, L. Longchambon, P. E. Pottie, T. Liennard, A. Perrin, V. Lorent, and H. Perrin, Rubidium-87 Bose–Einstein condensate in an optically plugged quadrupole trap, Phys. Rev. A, 2012, 85(1): 013643
CrossRef ADS Google scholar
[41]
P. A. Altin, N. P. Robins, D. Döring, J. E. Debs, R. Poldy, C. Figl, and J. D. Close, 85Rb tunable-interaction Bose–Einstein condensate machine, Rev. Sci. Instrum., 2010, 81(6): 063103
CrossRef ADS Google scholar
[42]
Y. J. Lin, A. R. Perry, R. L. Compton, I. Spielman, and J. Porto, Rapid production of 87Rb Bose–Einstein condensates in a combined magnetic and optical potential, Phys. Rev. A, 2009, 2009(6): 063631
CrossRef ADS Google scholar
[43]
J. Fortágh and C. Zimmermann, Magnetic microtraps for ultracold atoms, Rev. Mod. Phys., 2007, 79(1): 235
CrossRef ADS Google scholar
[44]
J. Reichel and V. Vuletic, Atom Chips, Wiley-VCH Verlag GmbH & Co. KGaA, 2011
[45]
C. S. Hofmann, , Combined optical and matterbased probing of Rydberg electromagnetically induced transparency, 2013 (to be published)
[46]
T. G. Tiecke, S. D. Gensemer, A. Ludewig, and J. Walraven, High-flux two-dimensional magneto-optical-trap source for cold lithium atoms, Phys. Rev. A, 2009, 80(1): 013409
CrossRef ADS Google scholar
[47]
We use ALVASOURCES from Alvatec, which are chromatefree metal vapor sources of the type AS-3-Rb87(98%)-20-F
[48]
S. Götz, B. Höltkemeier, C. S. Hofmann, D. Litsch, B. D. DePaola, and M. Weidemüller, Versatile cold atom target apparatus, Rev. Sci. Instrum., 2012, 83(7): 073112
CrossRef ADS Google scholar
[49]
D. Jacob, E. Mimoun, L. D. Sarlo, M. Weitz, J. Dalibard, and F. Gerbier, Production of sodium Bose–Einstein condensates in an optical dimple trap, New J. Phys., 2011, 13(6): 065022
CrossRef ADS Google scholar
[50]
J. F. Clément, J. P. Brantut, M. Robert-de-Saint-Vincent, R. A. Nyman, A. Aspect, T. Bourdel, and P. Bouyer, Alloptical runaway evaporation to Bose–Einstein condensation, Phys. Rev. A, 2009, 79(6): 061406
CrossRef ADS Google scholar
[51]
T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm, Bose–Einstein condensation of cesium, Science, 2002, 299(5604): 232
CrossRef ADS Google scholar
[52]
M. Zaiser, J. Hartwig, D. Schlippert, U. Velte, N. Winter, V. Lebedev, W. Ertmer, and E. M. Rasel, Simple method for generating Bose–Einstein condensates in a weak hybrid trap, Phys. Rev. A, 2011, 83(3): 035601
CrossRef ADS Google scholar
[53]
S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, Loading an optical dipole trap, Phys. Rev. A, 2000, 62(1): 013406
CrossRef ADS Google scholar
[54]
C. G. Townsend, N. H. Edwards, K. P. Zetie, C. Cooper, J. Rink, and C. Foot, High-density trapping of cesium atoms in a dark magneto-optical trap, Phys. Rev. A, 1996, 53(3): 1702
CrossRef ADS Google scholar
[55]
K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. Thomas, Scaling laws for evaporative cooling in time-dependent optical traps, Phys. Rev. A, 2001, 64(5): 051403
CrossRef ADS Google scholar
[56]
T. Lauber, J. Küber, O. Wille, and G. Birkl, Optimized Bose–Einstein-condensate production in a dipole trap based on a 1070-nm multifrequency laser: Influence of enhanced two-body loss on the evaporation process, Phys. Rev. A, 2011, 84(4): 043641
CrossRef ADS Google scholar
[57]
A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip, Phys. Rev. A, 2010, 81(6): 063411
CrossRef ADS Google scholar
[58]
H. Hattermann, M. Mack, F. Karlewski, F. Jessen, D. Cano, and J. Fortágh, Detrimental adsorbate fields in experiments with cold Rydberg gases near surfaces, Phys. Rev. A, 2012, 86(2): 022511
CrossRef ADS Google scholar
[59]
M. Fleischhauer, A. Imamoglu, and J. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys., 2005, 77(2): 633
CrossRef ADS Google scholar
[60]
J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Cooperative atom-light interaction in a blockaded Rydberg ensemble, Phys. Rev. Lett., 2010, 105(19): 193603
CrossRef ADS Google scholar
[61]
H. Schempp, G. Günter, C. S. Hofmann, C. Giese, S. D. Saliba, B. D. DePaola, T. Amthor, M. Weidemüller, S. Sevinçli, and T. Pohl, Coherent population trapping with controlled interparticle interactions, Phys. Rev. Lett., 2010, 104(17): 173602
CrossRef ADS Google scholar
[62]
S. Sevinçli, C. Ates, T. Pohl, H. Schempp, C. S. Hofmann, G. Günter, T. Amthor, M. Weidemüller, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Quantum interference in interacting threelevel Rydberg gases: Coherent population trapping and electromagnetically induced transparency, J. Phys. B: At. Mol. Opt. Phys., 2011, 44(18): 184018
CrossRef ADS Google scholar
[63]
R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev., 1954, 93(1): 99
CrossRef ADS Google scholar
[64]
R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, and T. Pfau, Evidence for coherent collective Rydberg excitation in the strong blockade regime, Phys. Rev. Lett., 2007, 99(16): 163601
CrossRef ADS Google scholar
[65]
A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys., 2009, 5(2): 115
CrossRef ADS Google scholar
[66]
E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two atoms, Nat. Phys., 2009, 5(2): 110
CrossRef ADS Google scholar
[67]
Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, Observation of coherent many-body Rabi oscillations, Nat. Phys., 2012, 8(11): 790
CrossRef ADS Google scholar
[68]
D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, Local blockade of Rydberg excitation in an ultracold gas, Phys. Rev. Lett., 2004, 93(6): 063001
CrossRef ADS Google scholar
[69]
K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms, Phys. Rev. Lett., 2004, 93(16): 163001
CrossRef ADS Google scholar
[70]
T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat, and P. Pillet, Electric-field induced dipole blockade with Rydberg atoms, Phys. Rev. Lett., 2007, 99(7): 073002
CrossRef ADS Google scholar
[71]
A. Reinhard, K. C. Younge, and G. Raithel, Effect of Foerster resonances on the excitation statistics of many-body Rydberg systems, Phys. Rev. A, 2008, 78: 060702(R)
CrossRef ADS Google scholar
[72]
M. Viteau, P. Huillery, M. G. Bason, N. Malossi, D. Ciampini, O. Morsch, E. Arimondo, D. Comparat, and P. Pillet, Cooperative excitation and many-body interactions in a cold Rydberg gas, Phys. Rev. Lett., 2012, 109(5): 053002
CrossRef ADS Google scholar
[73]
M. P. Robinson, B. L. Tolra, M. W. Noel, T. Gallagher, and P. Pillet, Spontaneous evolution of Rydberg atoms into an ultracold plasma, Phys. Rev. Lett., 2000, 85(21): 4466
CrossRef ADS Google scholar
[74]
T. C. Killian, Ultracold neutral plasmas, Science, 2007, 316(5825): 705
CrossRef ADS Google scholar
[75]
W. Li, M. W. Noel, M. P. Robinson, P. Tanner, T. Gallagher, D. Comparat, B. Laburthe Tolra, N. Vanhaecke, T. Vogt, N. Zahzam, P. Pillet, and D. Tate, Evolution dynamics of a dense frozen Rydberg gas to plasma, Phys. Rev. A, 2004, 70(4): 042713
CrossRef ADS Google scholar
[76]
A. Walz-Flannigan, J. R. Guest, J. H. Choi, and G. Raithel, Cold-Rydberg-gas dynamics, Phys. Rev. A, 2004, 69(6): 063405
CrossRef ADS Google scholar
[77]
J. P. Morrison, C. J. Rennick, J. S. Keller, and E. Grant, Evolution from a molecular Rydberg gas to an ultracold plasma in a seeded supersonic expansion of NO, Phys. Rev. Lett., 2008, 101(20): 205005
CrossRef ADS Google scholar
[78]
B. A. Remington, D. Arnett, R. Paul, Drake, and H. Takabe, Modeling astrophysical phenomena in the laboratory with intense lasers, Science, 1999, 284(5419): 1488
CrossRef ADS Google scholar
[79]
H. M. Van Horn, Dense astrophysical plasmas, Science, 1991, 252(5004): 384
CrossRef ADS Google scholar
[80]
E. Shuryak, Physics of strongly coupled quark–gluon plasma, Prog. Part. Nucl. Phys., 2009, 62(1): 48
CrossRef ADS Google scholar
[81]
S. Ichimaru, Strongly coupled plasmas: High-density classical plasmas and degenerate electron liquids, Rev. Mod. Phys., 1982, 54(4): 1017
CrossRef ADS Google scholar
[82]
T. C. Killian, T. Pattard, T. Pohl, and J. M. Rost, Ultracold neutral plasmas, Phys. Rep., 2007, 449(4-5): 77
CrossRef ADS Google scholar
[83]
C. E. Simien, Y. C. Chen, P. Gupta, S. Laha, Y. Martinez, P. Mickelson, S. Nagel, and T. Killian, Using absorption imaging to study ion dynamics in an ultracold neutral plasma, Phys. Rev. Lett., 2004, 92(14): 143001
CrossRef ADS Google scholar
[84]
E. A. Cummings, J. E. Daily, D. S. Durfee, and S. Bergeson, Fluorescence measurements of expanding strongly coupled neutral plasmas, Phys. Rev. Lett., 2005, 95(23): 235001
CrossRef ADS Google scholar
[85]
S. G. Kuzmin and T. M. O’Neil, Numerical simulation of ultracold plasmas: How rapid intrinsic heating limits the development of correlation, Phys. Rev. Lett., 2002, 88(6): 065003
CrossRef ADS Google scholar
[86]
T. Pohl, T. Pattard, and J. M. Rost, Kinetic modeling and molecular dynamics simulation of ultracold neutral plasmas including ionic correlations, Phys. Rev. A, 2004, 70(3): 033416
CrossRef ADS Google scholar
[87]
S. D. Bergeson, A. Denning, M. Lyon, and F. Robicheaux, Density and temperature scaling of disorder-induced heating in ultracold plasmas, Phys. Rev. A, 2011, 83(2): 023409
CrossRef ADS Google scholar
[88]
I. I. Beterov, D. B. Tretyakov, I. I. Ryabtsev, A. Ekers, and N. Bezuglov, Ionization of sodium and rubidium nS, nP, and nD Rydberg atoms by blackbody radiation, Phys. Rev. A, 2007, 75(5): 052720
CrossRef ADS Google scholar
[89]
L. Barbier and M. Cheret, Experimental study of penning and Hornbeck–Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s), J. Phys. B: At. Mol. Opt. Phys., 1987, 20(6): 1229
CrossRef ADS Google scholar
[90]
A. Kumar, B. C. Sahaa, C. A. Weatherforda, and S. K. Verma, A systematic study of Hornbeck Molnar ionization involving Rydberg alkali atoms, J. Mol. Struct. Theochem., 1999, 487(1-2): 1
CrossRef ADS Google scholar
[91]
M. S. Murillo, Using Fermi statistics to create strongly coupled ion plasmas in atom traps, Phys. Rev. Lett., 2001, 87(11): 115003
CrossRef ADS Google scholar
[92]
P. K. Shukla and K. Avinash, Phase coexistence and a critical point in ultracold neutral plasmas, Phys. Rev. Lett., 2011, 107(13): 135002
CrossRef ADS Google scholar
[93]
L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence, Opt. Lett., 1979, 4(7): 205
CrossRef ADS Google scholar
[94]
S. Wüster, J. Stanojevic, C. Ates, T. Pohl, P. Deuar, J. F. Corney, and J. M. Rost, Correlations of Rydberg excitations in an ultracold gas after an echo sequence, Phys. Rev. A, 2010, 81(2): 023406
CrossRef ADS Google scholar
[95]
D. Breyel, T. L. Schmidt, and A. Komnik, Rydberg crystallization detection by statistical means, Phys. Rev. A, 2012, 86(2): 023405
CrossRef ADS Google scholar
[96]
M. Gärttner, K. P. Heeg, T. Gasenzer, and J. Evers, Optimal self-assembly of Rydberg excitations for quantum gate operations, Phys. Rev. A, 2013, 88(4): 043410
CrossRef ADS Google scholar
[97]
M. Fleischhauer and M. D. Lukin, Dark-state polaritons in electromagnetically induced transparency, Phys. Rev. Lett., 2000, 84(22): 5094
CrossRef ADS Google scholar
[98]
C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Strong interaction effects on the atom counting statistics of ultracold Rydberg gases, J. Phys. B: At. Mol. Opt. Phys., 2006, 39(11): L233
CrossRef ADS Google scholar
[99]
H. Schempp, G. Günter, M. Robert-de-Saint-Vincent, C. S. Hofmann, D. Breyel, A. Komnik, D. W. Schönleber, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, Full counting statistics of laser excited Rydberg aggregates in a one-dimensional geometry, arXiv: 1308.0264, 2013
[100]
D. Petrosyan, J. Otterbach, and M. Fleischhauer, Electromagnetically induced transparency with Rydberg atoms, Phys. Rev. Lett., 2011, 107(21): 213601
CrossRef ADS Google scholar
[101]
V. Parigi, E. Bimbard, J. Stanojevic, A. J. Hilliard, F. Nogrette, R. Tualle-Brouri, A. Ourjoumtsev, and P. Grangier, Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms, Phys. Rev. Lett., 2012, 109(23): 233602
CrossRef ADS Google scholar
[102]
E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, Strongly interacting photons in hollow-core waveguides, Phys. Rev. A, 2011, 83(3): 033806
CrossRef ADS Google scholar
[103]
A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, Photon–photon interactions via Rydberg blockade, Phys. Rev. Lett., 2011, 107(13): 133602
CrossRef ADS Google scholar
[104]
M. Fleischhauer, J. Otterbach, and R. G. Unanyan, Bose–Einstein condensation of stationary-light polaritons, Phys. Rev. Lett., 2008, 101(16): 163601
CrossRef ADS Google scholar
[105]
G. Nikoghosyan, F. E. Zimmer, and M. B. Plenio, Dipolar Bose–Einstein condensate of dark-state polaritons, Phys. Rev. A, 2012, 86(2): 023854
CrossRef ADS Google scholar
[106]
J. Honer, R. Löw, H. Weimer, T. Pfau, and H. P. Büchler, Artificial atoms can do more than atoms: Deterministic single photon subtraction from arbitrary light fields, Phys. Rev. Lett., 2011, 107(9): 093601
CrossRef ADS Google scholar
[107]
J. Stanojevic, V. Parigi, E. Bimbard, A. Ourjoumtsev, P. Pillet, and P. Grangier, Generating non-Gaussian states using collisions between Rydberg polaritons, Phys. Rev. A, 2012, 86(2): 021403
CrossRef ADS Google scholar
[108]
I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, Long-range interactions and entanglement of slow singlephoton pulses, Phys. Rev. A, 2005, 72(4): 043803
CrossRef ADS Google scholar
[109]
D. Petrosyan and M. Fleischhauer, Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators, Phys. Rev. Lett., 2008, 100(17): 170501
CrossRef ADS Google scholar
[110]
G. Günter, M. Robert-de-Saint-Vincent, H. Schempp, C. S. Hofmann, S. Whitlock, and M. Weidemüller, Interaction enhanced imaging of individual Rydberg atoms in dense gases, Phys. Rev. Lett., 2012, 108(1): 013002
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1076 KB)

Accesses

Citations

Detail

Sections
Recommended

/