Anharmonic effect of adiabatic quantum pumping

Wei-Yin Deng (邓伟胤), Ke-Ju Zhong (钟克菊), Rui Zhu (朱瑞), Wen-Ji Deng (邓文基)

PDF(441 KB)
PDF(441 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 164-169. DOI: 10.1007/s11467-013-0394-9

Anharmonic effect of adiabatic quantum pumping

Author information +
History +

Abstract

Based on the scattering matrix approach, we systematically investigate the anharmonic effect of the pumped current in double-barrier structures with adiabatic time-modulation of two sinusoidal AC driven potential heights. The pumped current as a function of the phase difference between the two driven potentials looks like to be sinusoidal, but actually it contains sine functions of double and more phase difference. It is found that this kind of anharmonic effect of the pumped current is determined combinedly by the Berry curvature and parameter variation loop trajectory. Therefore small ratio of the driving amplitude and the static amplitude is not necessary for harmonic pattern in the pumped current to dominate for smooth Berry curvature on the surface within the parametervariation loop.

Graphical abstract

Keywords

quantum pumping / anharmonic effect / Berry curvature / instant scattering matrix expansion

Cite this article

Download citation ▾
Wei-Yin Deng (邓伟胤), Ke-Ju Zhong (钟克菊), Rui Zhu (朱瑞), Wen-Ji Deng (邓文基). Anharmonic effect of adiabatic quantum pumping. Front. Phys., 2014, 9(2): 164‒169 https://doi.org/10.1007/s11467-013-0394-9

References

[1]
D. J. Thouless, Quantization of particle transport, Phys. Rev. B, 1983, 27(10): 6083
CrossRef ADS Google scholar
[2]
M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, An adiabatic quantum electron pump, Science, 1999, 283(5409): 1905
CrossRef ADS Google scholar
[3]
D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys., 2010, 82(3): 1959
CrossRef ADS Google scholar
[4]
M. Büttiker, H. Thomas, and A. Prêtre, Current partition in multiprobe conductors in the presence of slowly oscillating external potentials, Z. Phys. B, 1994, 94(1-2): 133
CrossRef ADS Google scholar
[5]
P. W. Brouwer, Scattering approach to parametric pumping, Phys. Rev. B, 1998, 58(16): R10135
CrossRef ADS Google scholar
[6]
Q. Niu, Towards a quantum pump of electric charges, Phys. Rev. Lett., 1990, 64(15): 1812
CrossRef ADS Google scholar
[7]
V. I. Talyanskii, J. M. Shilton, M. Pepper, C. G. Smith, C. J. B. Ford, E. H. Linfield, D. A. Ritchie, and G. A. C. Jones, Single-electron transport in a one-dimensional channel by high-frequency surface acoustic waves, Phys. Rev. B, 1997, 56(23): 15180
CrossRef ADS Google scholar
[8]
F. Romeo and R. Citro, Adiabatic pumping in a double quantum dot structure with strong spin-orbit interaction, Phys. Rev. B, 2009, 80(16): 165311
CrossRef ADS Google scholar
[9]
A. Agarwal and D. Sen, Equation of motion approach to non-adiabatic quantum charge pumping, J. Phys.: Condens. Matter, 2007, 19(4): 046205
CrossRef ADS Google scholar
[10]
P. Devillard, V. Gasparian, and T. Martin, Charge pumping and noise in a one-dimensional wire with weak electron– electron interactions, Phys. Rev. B, 2008, 78(8): 085130
CrossRef ADS Google scholar
[11]
S. Roddaro, E. Strambini, L. Romeo, V. Piazza, K. Nilsson, L. Samuelson, and F. Beltram, Charge pumping in InAs nanowires by surface acoustic waves, Semicond. Sci. Technol., 2010, 25(2): 024013
CrossRef ADS Google scholar
[12]
X. L. Qi and S. C. Zhang, Field-induced gap and quantized charge pumping in a nanoscale helical wire, Phys. Rev. B, 2009, 79(23): 235442
CrossRef ADS Google scholar
[13]
R. Citro and F. Romeo, Pumping in a mesoscopic ring with Aharonov–Casher effect, Phys. Rev. B, 2006, 73(23): 233304
CrossRef ADS Google scholar
[14]
Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, Topological states and adiabatic pumping in quasicrystals, Phys. Rev. Lett., 2012, 109(10): 106402
CrossRef ADS Google scholar
[15]
Y. D. Wei, J. Wang, and H. Guo, Resonance-assisted parametric electron pump, Phys. Rev. B, 2000, 62(15): 9947
CrossRef ADS Google scholar
[16]
Y. C. Xiao, W. Y. Deng, W. J. Deng, R. Zhu, and R. Q. Wang, Quantum pump in a system with both Rashba and Dresselhaus spin–orbit couplings, Phys. Lett. A, 2013, 377(10-11): 817
CrossRef ADS Google scholar
[17]
B. G. Wang and J. Wang, Optimal quantum pump in the presence of a superconducting lead, Phys. Rev. B, 2002, 66(20): 201305(R)
CrossRef ADS Google scholar
[18]
J. Wang and B. G. Wang, Quantization of adiabatic pumped charge in the presence of superconducting lead, Phys. Rev.B, 2002, 65(15): 153311
CrossRef ADS Google scholar
[19]
N. B. Kopnin, A. S. Melnikov, and V. M. Vinokur, Resonance energy and charge pumping through quantum SINIS contacts, Phys. Rev. Lett., 2006, 96(14): 146802
CrossRef ADS Google scholar
[20]
S. Russo, J. Tobiska, T. M. Klapwijk, and A. F. Morpurgo, Adiabatic quantum pumping at the josephson frequency, Phys. Rev. Lett., 2007, 99(8): 086601
CrossRef ADS Google scholar
[21]
R. Zhu and H. Chen, Quantum pumping with adiabatically modulated barriers in graphene, Appl. Phys. Lett., 2009, 95(12): 122111
CrossRef ADS Google scholar
[22]
R. Zhu and M. L. Lai, Pumped shot noise in adiabatically modulated graphene-based double-barrier structures, J. Phys.: Condens. Matter, 2011, 23(45): 455302
CrossRef ADS Google scholar
[23]
E. Prada, P. San-Jose, and H. Schomerus, Quantum pumping in graphene, Phys. Rev. B, 2009, 80(24): 245414
CrossRef ADS Google scholar
[24]
A. Kundu, S. Rao, and A. Saha, Quantum charge pumping through a superconducting double barrier structure in graphene, Phys. Rev. B, 2011, 83(16): 165451
CrossRef ADS Google scholar
[25]
M. Alos-Palop and M. Blaauboer, Adiabatic quantum pumping in normal-metal–insulator–superconductor junctions in a monolayer of graphene, Phys. Rev. B, 2011, 84(7): 073402
CrossRef ADS Google scholar
[26]
M. Moskalets and M. Büttiker, Dissipation and noise in adiabatic quantum pumps, Phys. Rev. B, 2002, 66(3): 035306
CrossRef ADS Google scholar
[27]
M. Moskalets and M. Büttiker, Magnetic-field symmetry of pump currents of adiabatically driven mesoscopic structures, Phys. Rev. B, 2005, 72(3): 035324
CrossRef ADS Google scholar
[28]
M. Moskalets and M. Büttiker, Time-resolved noise of adiabatic quantum pumps, Phys. Rev. B, 2007, 75(3): 035315
CrossRef ADS Google scholar
[29]
M. Büttiker, A. Prêtre, and H. Thomas, Dynamic conductance and the scattering matrix of small conductors, Phys. Rev. Lett., 1993, 70(26): 4114
CrossRef ADS Google scholar
[30]
J. E. Avron, A. Elgart, G. M. Graf, and L. Sadun, Geometry, statistics, and asymptotics of quantum pumps, Phys. Rev. B, 2000, 62(16): R10618
CrossRef ADS Google scholar
[31]
W. W. Kim, Floquet formalism of quantum pumps, Int. J. Mod. Phys. B, 2004, 18(23): 3071
CrossRef ADS Google scholar
[32]
R. Zhu, A scattering matrix approach to quantum pumping: Beyond the small-AC-driving-amplitude limit, Chinese Phys. B, 2010, 19(12): 127201
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(441 KB)

Accesses

Citations

Detail

Sections
Recommended

/