A unified dynamic scaling property for the unified hybrid network theory framework

Qiang Liu, Jin-Qing Fang, Yong Li

PDF(320 KB)
PDF(320 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 240-245. DOI: 10.1007/s11467-013-0389-6

A unified dynamic scaling property for the unified hybrid network theory framework

Author information +
History +

Abstract

In this article, we present a new type of unified dynamic scaling property for synchronizability, which can describe the scaling relationship between dynamic synchronizability and four hybrid ratios under the unified hybrid network theory framework (UHNTF). Our theory results can not only be applied to judge and analyze dynamic synchronizability for most of complex networks associated with the UHNTF, but also we can flexibly adjust and design different hybrid ratios and scaling exponent to meet actual requirement for the dynamic characteristics of the UHNTF.

Graphical abstract

Keywords

dynamic scaling property / unified hybrid network theory framework (UHNTF) / synchronizability / hybrid ratios

Cite this article

Download citation ▾
Qiang Liu, Jin-Qing Fang, Yong Li. A unified dynamic scaling property for the unified hybrid network theory framework. Front. Phys., 2014, 9(2): 240‒245 https://doi.org/10.1007/s11467-013-0389-6

References

[1]
D. J. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness, Princeton: Princeton University Press, 1999
[2]
L. M. Pecora and T. C. Carroll, Driving systems with chaotic signals, Phys. Rev. A, 1993, 44(4): 2374
CrossRef ADS Google scholar
[3]
L. M. Pecora and T. C. Carroll, Master Stability functions for synchronized coupled systems, Phys. Rev. Lett., 1998, 80(10): 2109
CrossRef ADS Google scholar
[4]
K. Park, L. Huang, and Y. C. Lai, Desynchronization waves in small-world networks, Phys. Rev. E, 2007, 75(2): 026211
CrossRef ADS Google scholar
[5]
C. Y. Yin, B. H. Wang, W. X. Wang, and G. R. Chen, Geographical effect on small-world network synchronization, Phys. Rev. E, 2008, 77(2): 027102
CrossRef ADS Google scholar
[6]
L. K. Tang, J. A. Lu, and G. R. Chen, Synchronizability of small-world networks generated from ring networks with equal-distance edge additions, Chaos, 2012, 22(2): 023121
CrossRef ADS Google scholar
[7]
D. J. Watts and S. H. Strogatz, Collective dynamics of small world networks, Nature, 1998, 393: 440
CrossRef ADS Google scholar
[8]
A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 1999, 286(5439): 509
CrossRef ADS Google scholar
[9]
J. H. Lü, X. H. Yu, G. R. Chen, and D. Z. Chen, Characterizing the synchronizability of small-world dynamical networks, IEEE Trans. Circuits Syst. I, 2004, 51(1): 787
CrossRef ADS Google scholar
[10]
K. Kaneko, Coupled Map Lattices, Singapore: World Scientific, 1992
[11]
S. C. Manrubia and S. M. Mikhailov, Mutual synchronization and clustering in randomly coupled chaotic dynamical networks, Phys. Rev. E, 1999, 60(2): 1579
CrossRef ADS Google scholar
[12]
X. F. Wang and G. R. Chen, Synchronization in small-world dynamical networks, Int. J. Bifurcation Chaos, 2002, 12(1): 187
CrossRef ADS Google scholar
[13]
X. F. Wang and G. R. Chen, Synchronization in scale-free dynamical networks: robustness and fragility, IEEE Trans. Circuits Syst. I, 2002, 49(1): 54
CrossRef ADS Google scholar
[14]
A. E. Motter, C. S. Zhou, and J. Kurths, Network synchronization, diffusion, and the paradox of heterogeneity, Phys. Rev. E, 2005, 71(1): 016116
CrossRef ADS Google scholar
[15]
T. Zhou, M. Zhao, and B. H. Wang, Better synchronizability predicted by crossed double cycle, Phys. Rev. E, 2006, 73(3): 037101
CrossRef ADS Google scholar
[16]
X. Wu, B. H. Wang, T. Zhou, W. X. Wang, M. Zhao, and H. J. Yang, The synchronizability of highly clustered scale-free networks, Chin. Phys. Lett., 2006, 23(4): 1046
CrossRef ADS Google scholar
[17]
J. Q. Fang and Y. Liang, Topological Properties and transition features generated by a new hybrid preferential model, Chin. Phys. Lett., 2005, 22(10): 2719
CrossRef ADS Google scholar
[18]
J. Q. Fang, Q. Bi, and Y. Li, Toward a harmonious unifying hybrid model for any evolving complex networks, Adv. Comp. Syst., 2007, 10(2): 117
CrossRef ADS Google scholar
[19]
J. Q. Fang, Q. Bi, Y. Li, and Q. Liu, A harmonious unifying hybrid preferential model of complex dynamic networks and its universal characteristics, Sci. China Ser. G, 2007, 37(2): 230
[20]
J. Q. Fang, Q. Bi, Y. Li, and Q. Liu, Sensitivity of exponents of three-power-laws to hybrid ratio in weighted HUHPM, Chin. Phys. Lett., 2007, 24(1): 279
CrossRef ADS Google scholar
[21]
X. B. Lu, X. F. Wang, X. Li, and J. Q. Fang, Synchronization in weighted complex networks: Heterogeneity and synchronizability, Physica A, 2006, 370(2): 381
CrossRef ADS Google scholar
[22]
J. Q. Fang, Q. Bi, Y. Li, and Q. Liu, A harmonious unifying hybrid preferential model and its universal properties for complex dynamical networks, Sci. China Ser. G, 2007, 50(3): 379
CrossRef ADS Google scholar
[23]
Y. Li, J. Q. Fang, Q. Bi, and Q. Liu, Entropy characteristic on harmonious unifying hybrid preferential networks, Entropy, 2007, 9(2): 73
CrossRef ADS Google scholar
[24]
Q. Bi and J. Q Fang, Entropy and HUHPM approach for complex networks, Physica A, 2007, 383(2): 753
CrossRef ADS Google scholar
[25]
J. Q. Fang, Q. Bi, and Y. Li, From a harmonious unifying hybrid preferential model toward a large unifying hybrid network model, Int. J. Mod. Phys. B, 2007, 21(30): 5121
CrossRef ADS Google scholar
[26]
J. Q. Fang, Q. Bi, and Y. Li, Advances in theoretical models of network science, Front. Phys. China, 2007, 1(2): 109
CrossRef ADS Google scholar
[27]
J. Q. Fang, Exploring theoretical model of network science and research progresses, Science Technology Review, 2006, 24(12): 67 (in Chinese)
[28]
J. Q. Fang, Advances in the research of dynamical complexity of nonlinear network, Prog. Nat. Sci., 2007, 17(9): 841(in Chinese)
[29]
J. Q. Fang, X. F. Wang, Z. G. Zheng, Z. R. Di, and Y. Fang, New interdisciplinary science: Network science (I), Prog. Phys., 2007, 27(3): 239(in Chinese)
[30]
J. Q. Fang, Theoretical research progress in complexity of complex dynamical networks, Prog. Nat. Sci., 2007, 17(7): 761(in Chinese)
CrossRef ADS Google scholar
[31]
X. B. Lu, X. F. Wang, and J. Q. Fang, Topological transition features and synchronizability of a weighted hybrid preferential network, Physica A, 2006, 371(2): 841
CrossRef ADS Google scholar
[32]
J. Q. Fang, Network complexity pyramid with five levels, Int. J. Syst. Cont. Commun., 2009, 1(4): 453
CrossRef ADS Google scholar
[33]
J. Q. Fang, Mastering Chaos and Developing High-Tech, Beijing: Atomic Energy Press, 2002
[34]
J. Q. Fang and Y. Li, Advances in unified hybrid theoretical model of network science, Adv. Mech., 2008, 38(6): 663
[35]
J. Q. Fang and Y. Li, Transition features from simplicity-universality to complexity-diversification under the UHNMVSG, Commun. Theor. Phys., 2010, 53(2): 389
CrossRef ADS Google scholar
[36]
J. Q. Fang, Y. Li, and Q. Liu, Three Types of Network Complexity Pyramid, (book: Advances in Network Complexity), Berlin: Wiley-VCH, 2012
[37]
Y. Li, J. Q. Fang, Q. Liu, and Q. Bi, Exploring the characteristics of Chinese high technology industry networks, J. Univ. Shanghai Sci. Tech., 2008, 30(3): 300(in Chinese)
[38]
Q. Liu, J. Q. Fang, and Y. Li, Several features of China Top-100 electronic information technology enterprise network, J. Guangxi Norm. Univ., 2008, 26(4): 1(in Chinese)
[39]
J. Q. Fang, Investigating high-tech networks with four levels from developing viewpoint of network science, World Sci.-Tech. R&D, 2008, 30(5): 667(in Chinese)
[40]
Y. Li, J. Q. Fang, and Q. Liu, Characteristics of continuum percolation evolving network, Comp. Syst. Comp. Sci., 2010, 7(2): 97(in Chinese)
[41]
Y. Li, J. Q. Fang, and Q. Liu, Global nuclear plant network and its characteristics, Atomic Energy Science and Technology, 2010, 44(9): 1139(in Chinese)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(320 KB)

Accesses

Citations

Detail

Sections
Recommended

/