Optomechanical sensing with on-chip microcavities

Yi-Wen Hu, Yun-Feng Xiao, Yong-Chun Liu, Qihuang Gong

PDF(682 KB)
PDF(682 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (5) : 475-490. DOI: 10.1007/s11467-013-0384-y
REVIEW ARTICLE
REVIEW ARTICLE

Optomechanical sensing with on-chip microcavities

Author information +
History +

Abstract

The coupling between optical and mechanical degrees of freedom has been of broad interest for a long time. However, it is only until recently, with the rapid development of optical microcavity research, that we are able to manipulate and utilize this coupling process. When a high Q microcavity couples to a mechanical resonator, they can consolidate into an optomechanical system. Benefitting from the unique characteristics offered by optomechanical coupling, this hybrid system has become a promising platform for ultrasensitive sensors to detect displacement, mass, force and acceleration. In this review, we introduce the basic physical concepts of cavity optomechanics, and describe some of the most typical experimental cavity optomechanical systems for sensing applications. Finally, we discuss the noise arising from various sources and show the potentiality of optomechanical sensing towards quantum-noise-limited detection.

Keywords

optical microcavities / mechanical resonators / cavity optomechanics / optical sensing / integrated photonics

Cite this article

Download citation ▾
Yi-Wen Hu, Yun-Feng Xiao, Yong-Chun Liu, Qihuang Gong. Optomechanical sensing with on-chip microcavities. Front. Phys., 2013, 8(5): 475‒490 https://doi.org/10.1007/s11467-013-0384-y

References

[1]
J. Kepler, De Cometis, 1619
[2]
Actually Kepler’s conjecture is not fully accurate. From the viewpoint of modern astronomy, the formation and deflection of comet tails are due to the forces from both radiation pressure and solar wind.
[3]
A. Ashkin, History of optical trapping and manipulation of small-neutral particle, atoms, and molecules, EEE J. Sel. Top. Quantum Electron., 2000, 6(6): 841
CrossRef ADS Google scholar
[4]
V. B. Braginsky and A. B. Manukin, Measurement of weak forces in physics experiments, Chicago: niversity of Chicago Press, 1977
[5]
K. J. Vahala, Optical microcavities, Nature, 2003, 424(6950): 839
CrossRef ADS Google scholar
[6]
J. Ma and M. L. Povinelli, Applications of optomechanical effects for on-chip manipulation of light signals, Curr. Opin. Solid State Mater. Sci., 2012, 16(2): 82
CrossRef ADS Google scholar
[7]
H. Cai, K. Xu, A. Liu, Q. Fang, M. Yu, G. Lo, and D. Kwong, Nano-opto-mechanical actuator driven by gradient optical force, Appl. Phys. Lett., 2012, 100(1): 013108
CrossRef ADS Google scholar
[8]
X. Guo, C. L. Zou, X. F. Ren, F. W. Sun, and G. C. Guo, Broadband opto-mechanical phase shifter for hotonic integrated circuits, Appl. Phys. Lett., 2012, 101(7): 071114
CrossRef ADS Google scholar
[9]
T. J. Kippenberg and K. J. Vahala, Cavity opto-mechanics, Opt. Express, 2007, 15(25): 17172
CrossRef ADS Google scholar
[10]
T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science, 2008, 321(5893): 1172
CrossRef ADS Google scholar
[11]
A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys., 2010, 82(2): 1155
CrossRef ADS Google scholar
[12]
P. Meystre, A short walk through quantum optomechanics, Annalen der Physik, 2013, 525(3): 215
CrossRef ADS Google scholar
[13]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, arXiv: 1303.0733, 2013
[14]
D. Van Thourhout and J. Roels, Optomechanical device actuation through the optical gradient force, Nat. Photonics, 2010, 4(4): 211
CrossRef ADS Google scholar
[15]
L. Atzori, A. Iera, and G. Morabito, The internet of things: A survey, Comput. Netw., 2010, 54(15): 2787
CrossRef ADS Google scholar
[16]
A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics, CRC Press, 2009
[17]
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Ultra-high-Q toroid microcavity on a chip, Nature, 2003, 421(6926): 925
CrossRef ADS Google scholar
[18]
B. B. Li, Y. F. Xiao, C. L. Zou, X. F. Jiang, Y. C. Liu, F. W. Sun, Y. Li, and Q. Gong, Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators, Appl. Phys. Lett., 2012, 100(2): 021108
CrossRef ADS Google scholar
[19]
Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. Gong, High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization, Appl. Phys. Lett., 2013, 102(22): 221108
CrossRef ADS Google scholar
[20]
Y.-F. Xiao, X.-F. Jiang, Q.-F. Yang, L. Wang, K. Shi, Y. Li, and Q. Gong, Tunneling-induced transparency in a chaotic microcavity, Laser & Photonics Reviews, 2013, 7(5): L51
CrossRef ADS Google scholar
[21]
S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Whispering-gallery mode microdisk lasers, Appl. Phys. Lett., 1992, 60:289
CrossRef ADS Google scholar
[22]
H. J. Moon, Y. T. Chough, and K. An, Cylindrical microcavity laser based on the evanescent-wave-coupled gain, Phys.Rev. Lett., 2000, 85(15): 3161
CrossRef ADS Google scholar
[23]
X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, Highly unidirectional emission and ultralow-threshold lasing from onchip ultrahigh-Q microcavities, Adv. Mater., 2012, 24(35): OP260
CrossRef ADS Google scholar
[24]
L. He, S. K. Özdemir, and L. Yang, Whispering gallery microcavity lasers, Laser & Photonics Reviews, 2013, 7: 60
CrossRef ADS Google scholar
[25]
B. B. Li, Y. F. Xiao, M. Y. Yan, W. R. Clements, and Q. Gong, Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity, Opt. Lett., 2013, 38(11): 1802
CrossRef ADS Google scholar
[26]
Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Micrometre-scale silicon electro-optic modulator, Nature, 2005, 435(7040): 325
CrossRef ADS Google scholar
[27]
H. Rokhsari and K. J. Vahala, Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics, Phys. Rev. Lett., 2004, 92(25): 253905
CrossRef ADS Google scholar
[28]
H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, Ultralow- loss optical delay line on a silicon chip, Nat. Commun., 2012, 3: 867
CrossRef ADS Google scholar
[29]
V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, All-optical control of light on a silicon chip, Nature, 2004, 431(7012): 1081
CrossRef ADS Google scholar
[30]
J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator, Nat. Photonics, 2009, 4(1): 46
CrossRef ADS Google scholar
[31]
F. Vollmer and S. Arnold, Whispering-gallery-mode biosensing: Label-free detection down to single molecules, Nat.Methods, 2008, 5(7): 591
CrossRef ADS Google scholar
[32]
X. Yi, Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator, Phys. Rev. A, 2011, 83(2): 023803
CrossRef ADS Google scholar
[33]
F. Vollmer and L. Yang, Review Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices, Nanophotonics, 2012, 1(3-4): 267
[34]
L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, Detection of single nanoparticles and lentiviruses using microcavity resonance broadening, Adv. Mater., 2013,
CrossRef ADS Google scholar
[35]
A. N. Cleland and M. L. Roukes, A nanometre-scale mechanical electrometer, Nature, 1998, 392: 160
CrossRef ADS Google scholar
[36]
K. Jensen, K. Kim, and A. Zettl, An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol., 008, 3(9): 533
[37]
J. L. Arlett, E. B. Myers, and M. L. Roukes, Comparative advantages of mechanical biosensors, Nat. Nanotechnol., 2011, 6(4): 203
CrossRef ADS Google scholar
[38]
U. Krishnamoorthy, G. R. III Olsson, M. Bogart, D. Baker, T. Carr, T. P. Swiler, and P. Clews, In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor, Sens. Actuators A Phys., 2008, 145: 283
CrossRef ADS Google scholar
[39]
M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997
CrossRef ADS Google scholar
[40]
A. N. Cleland, Foundations of Nanomechanics: From Solid- State Theory to Device Applications, Springer-Verlag, 2003
[41]
C. Gardiner and P. Zoller, Quantum Noise, Springer, 2004
[42]
J. Rosenberg, Q. Lin, and O. Painter, Static and dynamic wavelength routing via the gradient optical force, Nat. Photonics, 2009, 3(8): 478
CrossRef ADS Google scholar
[43]
B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, D. E. McClelland, and S. E. Whitcomb, Observation and characterization of an optical spring, Phys. Rev. A, 2004, 69(5): 051801
CrossRef ADS Google scholar
[44]
A. Baas, J. P. Karr, H. Eleuch, and E. Giacobino, Optical bistability in semiconductor microcavities, Phys. Rev.A, 2004, 69(2): 023809
CrossRef ADS Google scholar
[45]
Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, Optical-force-induced bistability in nanomachined ring resonator systems, Appl. Phys. Lett., 2012, 100(9): 093108
CrossRef ADS Google scholar
[46]
G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, Controlling photonic structures using optical forces, Nature, 2009, 462(7273): 633
CrossRef ADS Google scholar
[47]
A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction, Phys. Rev. Lett., 2006, 97(24): 243905
CrossRef ADS Google scholar
[48]
O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror, Nature, 2006, 444(7115): 71
CrossRef ADS Google scholar
[49]
Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett., 2013, 110(15): 153606
CrossRef ADS Google scholar
[50]
T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode, Phys.Rev. Lett., 2005, 94(22): 223902
CrossRef ADS Google scholar
[51]
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett., 2005, 95(3): 033901
CrossRef ADS Google scholar
[52]
K. Zandi, B. Wong, J. Zou, R. V. Kruzelecky, W. Jamroz, and Y. A. Peter, In-plane silicon-on-insulator optical MEMS accelerometer using waveguide fabry-perot microcavity with silicon/air bragg mirrors, in: IEEE 23rd International Conference on Micro Electro Mechanical Systems, IEEE, 2010: 839-842
[53]
M. W. Pruessner, T. H. Stievater, J. B. Khurgin, and W. S. Rabinovich, Integrated waveguide-DBR microcavity optomechanical system, Opt. Express, 2011, 19(22): 21904
CrossRef ADS Google scholar
[54]
B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, Ultra-compact Si-SiO2 microring resonator optical channel dropping filters, IEEE Photon. Technol. Lett., 1998, 10(4): 549
CrossRef ADS Google scholar
[55]
F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, Ultra-compact high order ring resonator filters using ubmicron silicon photonic wires for on-chip optical interconnects, Opt. Express, 2007, 15(19): 11934
CrossRef ADS Google scholar
[56]
W. H. P.Pernice, M. Li, and H. X. Tang, Optomechanical coupling in photonic crystal supported nanomechanical waveguides, Opt. Express, 2009, 17(15): 12424
CrossRef ADS Google scholar
[57]
M. Li, W. H. P.Pernice, and H. X. Tang, Ultrahighfrequency nano-optomechanical resonators in slot waveguide ring cavities, Appl. Phys. Lett., 2010, 97(18): 183110
CrossRef ADS Google scholar
[58]
A. N. Oraevsky, Whispering-gallery waves, Quantum Electron., 2002, 32(5): 377
CrossRef ADS Google scholar
[59]
A. B. Matsko and V. S. Ilchenko, Optical resonators with whispering-gallery modes-part I: basics, IEEE J. Sel. Top.Quantum Electron., 2006, 12(1): 3
CrossRef ADS Google scholar
[60]
G. Anetsberger, R. Rivi’ere, A. Schliesser, O. Arcizet, and T. J. Kippenberg, Ultralow-dissipation optomechanical resonators on a chip, Nat. Photonics, 2008, 2(10): 627
CrossRef ADS Google scholar
[61]
Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, Mechanical oscillation and cooling actuated by the optical gradient force, Phys. Rev. Lett., 2009, 103(10): 103601
CrossRef ADS Google scholar
[62]
X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, High-Q double-disk microcavities for cavity optomechanics, Opt. Express, 2009, 17(23): 20911
CrossRef ADS Google scholar
[63]
Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, Coherent mixing of mechanical excitations in nano-optomechanical structures, Nat.Photonics, 2010, 4(4): 236
CrossRef ADS Google scholar
[64]
S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, A silicon nitride microdisk resonator with a 40-nmthin horizontal air slot, Opt. Express, 2010, 18(11): 11209
CrossRef ADS Google scholar
[65]
S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, Label-free optical biosensing using a horizontal airslot SiNx microdisk resonator, Opt. Express, 2010, 18(20): 20638
CrossRef ADS Google scholar
[66]
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E.Harris, Strong ispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature, 2008, 452(7183): 72
CrossRef ADS Google scholar
[67]
G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Near-field cavity optomechanics with nanomechanical oscillators, Nat. Phys., 2009, 5(12): 909
CrossRef ADS Google scholar
[68]
C. L. Zou, X. B. Zou, F. W. Sun, Z. F. Han, and G. C. Guo, Room-temperature steady-state optomechanical entanglement on a chip, Phys. Rev. A, 2011, 84(3): 032317
CrossRef ADS Google scholar
[69]
E. Gavartin, P. Verlot, and T. J. Kippenberg, A hybrid onchip optomechanical transducer for ultrasensitive force measurements, Nat. Nanotechnol., 2012, 7(8): 509
CrossRef ADS Google scholar
[70]
H. K. Li, Y. C. Liu, X. Yi, C. L. Zou, X. X. Ren, and Y. F. Xiao, Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling, Phys. Rev. A, 2012, 85(5): 053832
CrossRef ADS Google scholar
[71]
J. Chan, M. Eichenfield, R. Camacho, and O. Painter, Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity, Opt. Express, 2009, 17(5): 3802
CrossRef ADS Google scholar
[72]
M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, A picogram- and nanometre-scale photonic-crystal optomechanical cavity, Nature, 2009, 459(7246): 550
CrossRef ADS Google scholar
[73]
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Optomechanical crystals, Nature, 2009, 462(7269): 78
CrossRef ADS Google scholar
[74]
M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, Optomechanical wavelength and energy conversion in high- Q double-layer cavities of photonic crystal slabs, Phys. Rev. Lett., 2006, 97(2): 023903
CrossRef ADS Google scholar
[75]
X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity, Nano Lett., 2012, 12(5): 2299
CrossRef ADS Google scholar
[76]
G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, Brillouin cavity optomechanics with microfluidic devices, Nat. Commun., 2013, 4:1994
CrossRef ADS Google scholar
[77]
V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, Enhancing optical gradient forces with metamaterials, Phys. Rev. Lett., 2013, 110(5): 057401
CrossRef ADS Google scholar
[78]
K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator, Nano Lett., 2011, 11(2): 791
CrossRef ADS Google scholar
[79]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, A high-resolution microchip optomechanical accelerometer, Nat. Photonics, 2012, 6(11): 768
CrossRef ADS Google scholar
[80]
M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators, Opt. Express, 2005, 13(20): 8286
CrossRef ADS Google scholar
[81]
V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, Coupling and tunability of optical whispering-gallery modes: A basis for coordinate meter, Opt. Commun., 1994, 107(1-2): 41
CrossRef ADS Google scholar
[82]
J. L. Arlett, E. B. Myers, and M. L. Roukes, Comparative advantages of mechanical biosensors, Nat. Nanotechnol., 2011, 6(4): 203
CrossRef ADS Google scholar
[83]
A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, Cantilever-like micromechanical sensors., Rep. Prog. Phys., 2011, 74(3): 036101
CrossRef ADS Google scholar
[84]
Y. Liu, H. Miao, V. Aksyuk, and K. Srinivasan, Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy, Opt. Express, 2012, 20(16): 18268
CrossRef ADS Google scholar
[85]
G. I. Harris, D. L. McAuslan, T. M. Stace, A. C. Doherty, and W. P. Bowen, Minimum requirements for feedback enhanced force sensing, arXiv: 1303.1589, 2013
[86]
D. Woolf, P. C. Hui, E. Iwase, M. Khan, A. W. Rodriguez, P. Deotare, I. Bulu, S. G. Johnson, F. Capasso, and M. Loncar, Optomechanical and photothermal interactions in suspended photonic crystal membranes, Opt. Express, 2013, 21(6): 7258
CrossRef ADS Google scholar
[87]
F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, Casimir forces and quantum electrodynamical torques: Physics and nanomechanics, IEEE J. Sel. Top. Quantum Electron., 2007, 13(2): 400
CrossRef ADS Google scholar
[88]
A. W. Rodriguez, F. Capasso, and S. G. Johnson, The Casimir effect in microstructured geometries, Nat. Photonics, 2011, 5(4): 211
CrossRef ADS Google scholar
[89]
J. J. Li and K. D. Zhu, Nonlinear optical mass sensor with an optomechanical microresonator, Appl. Phys. Lett., 2012, 101(14): 141905
CrossRef ADS Google scholar
[90]
F. Liu and M. Hossein-Zadeh, Mass sensing with optomechanical oscillation, IEEE Sens. J., 2013, 13(1): 146
CrossRef ADS Google scholar
[91]
C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, High-power directional emission from microlasers with chaotic resonators, Science, 1998, 280(5369): 1556
CrossRef ADS Google scholar
[92]
Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, From the cover: Whispering-gallery mode resonators for highly unidirectional laser action, Proc. Natl. Acad. Sci. USA, 2010, 107(52): 22407
CrossRef ADS Google scholar
[93]
C. L. Zou, F. J. Shu, F. W. Sun, Z. J. Gong, Z. F. Han, and G. C. Guo, Theory of free space coupling to high-Q whispering gallery modes, Opt. Express, 2013, 21(8): 9982
CrossRef ADS Google scholar
[94]
B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, Microring resonator channel dropping filters, J. Lightwave Technol., 1997, 15(6): 998
CrossRef ADS Google scholar
[95]
J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler, IEEE Photon. Technol. Lett., 2000, 12(8): 1004
CrossRef ADS Google scholar
[96]
J. P. Laine, C. Tapalian, B. Little, and H. Haus, Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler, Sens. Actuators A Phys., 2001, 93(1): 1
CrossRef ADS Google scholar
[97]
M. A. Perez and A. M. Shkel, Design and demonstration of a bulk micromachined Fabry-P’erot μg-resolution accelerometer, IEEE Sens. J., 2007, 7(12): 1653
CrossRef ADS Google scholar
[98]
U. Krishnamoorthy, G. R. III Olsson, M. S. Bogart, D. W. Baker, T. P. Carr, T. P. Swiler, and P. J. Clews, In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor, Sens. Actuators A Phys., 2008, 145-146: 283
CrossRef ADS Google scholar
[99]
D. N. Hutchison and S. A. Bhave, Z-axis optomechanical accelerometer, in: IEEE 25th International Conference on Micro Electro Mechanical Systems, IEEE, 2012: 615-619
[100]
P. H. Kim, C. Doolin, B. D. Hauer, A. J. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, Nanoscale torsional optomechanics, Appl. Phys. Lett., 2013, 102(5): 053102
CrossRef ADS Google scholar
[101]
J. P. Davis, D. Vick, D. C. Fortin, J. A. J.Burgess, W. K. Hiebert, and M. R. Freeman, Nanotorsional resonator torque magnetometry, Appl. Phys. Lett., 2010, 96(7): 072513
CrossRef ADS Google scholar
[102]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, Cavity optomechanical magnetometer, Phys. Rev. Lett., 2012, 108(12): 120801
CrossRef ADS Google scholar
[103]
S. Lin, E. Schonbrun, and K. Crozier, Optical manipulation with planar silicon microring resonators, Nano Lett., 2010, 10(7): 2408
CrossRef ADS Google scholar
[104]
H. Cai and A. W. Poon, Optical manipulation and transport of microparticles on silicon nitride microring-resonatorbased add-drop devices, Opt. Lett., 2010, 35(17): 2855
CrossRef ADS Google scholar
[105]
H. Cai and A. W. Poon, Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator, Opt. Lett., 2011, 36(21): 4257
CrossRef ADS Google scholar
[106]
V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, Taking whispering gallery-mode single virus detection and sizing to the limit, Appl. Phys. Lett., 2012, 101(4): 043704
CrossRef ADS Google scholar
[107]
S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection, Appl. Phys. Lett., 2011, 98(24): 243104
CrossRef ADS Google scholar
[108]
M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity, J. Biophoton., 2012, 5(8-9): 629
CrossRef ADS Google scholar
[109]
A. H. J.Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides, Nature, 2009, 457(7225): 71
CrossRef ADS Google scholar
[110]
S. Lin and K. B. Crozier, Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles, Lab on a Chip, 2011, 11(23): 4047
CrossRef ADS Google scholar
[111]
L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge: Cambridge University Press, 2006
CrossRef ADS Google scholar
[112]
J. D. Jackson, Classical Electrodynamics, Wiley, 1998
[113]
J. P. Gordon, Radiation forces and momenta in dielectric media, Phys. Rev. A, 1973, 8(1): 14
CrossRef ADS Google scholar
[114]
A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett., 1986, 11(5): 288
CrossRef ADS Google scholar
[115]
Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, High-Q exterior Whispering-Gallery modes in a metal-coated microresonator, Phys. Rev. Lett., 2010, 105(15): 153902
CrossRef ADS Google scholar
[116]
Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator, Phys. Rev. A, 2012, 85(3): 031805
CrossRef ADS Google scholar
[117]
L. Zhou, X. Sun, X. Li, and J. Chen, Miniature microring resonator sensor based on a hybrid plasmonic waveguide, Sensors, 2011, 11(12): 6856
CrossRef ADS Google scholar
[118]
Y. W. Hu, B. B. Li, Y. X. Liu, Y. F. Xiao, and Q. Gong, Hybrid photonic-plasmonic mode for refractometer and nanoparticle trapping, Opt. Commun., 2013, 291: 380
CrossRef ADS Google scholar
[119]
F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., 2007, 99(9): 093902
CrossRef ADS Google scholar
[120]
M. Ludwig and F. Marquardt, Quantum many-body dynamics in optomechanical arrays, Phys. Rev. Lett., 2013, 111(7): 073603
CrossRef ADS Google scholar
[121]
M. A. Lemonde, N. Didier, and A. A. Clerk, Nonlinear interaction effects in a strongly driven optomechanical cavity, Phys. Rev. Lett., 2013, 111(5): 053602
CrossRef ADS Google scholar
[122]
K. B鴕kje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, Signatures of nonlinear cavity optomechanics in the weak coupling regime, Phys. Rev. Lett., 2013, 111(5): 053603
CrossRef ADS Google scholar
[123]
Y. C. Liu, Y. F. Xiao, Y. L. Chen, X. C. Yu, and Q. Gong, Parametric down-conversion and polariton pair generation in optomechanical systems, Phys. Rev. Lett., 2013, 111(8): 083601
CrossRef ADS Google scholar
[124]
J. Capmany and D. Novak, Microwave photonics combines two worlds, Nat. Photonics, 2007, 1(6): 319
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(682 KB)

Accesses

Citations

Detail

Sections
Recommended

/