Quantum nonthermal effect of the Vaidya–Bonner–de Sitter black hole

Wei-Zhen Pan(潘伟珍,), Xue-Jun Yang(杨学军), Guo-Xiang Yu(余国祥)

Front. Phys. ›› 2014, Vol. 9 ›› Issue (1) : 94-97.

PDF(167 KB)
PDF(167 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (1) : 94-97. DOI: 10.1007/s11467-013-0383-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantum nonthermal effect of the Vaidya–Bonner–de Sitter black hole

  • Wei-Zhen Pan(潘伟珍,), Xue-Jun Yang(杨学军), Guo-Xiang Yu(余国祥)
Author information +
History +

Abstract

Using the Hamilton–Jacobi equation of a scalar particle in the curve space-time and a correct-dimension new tortoise coordinate transformation, the quantum nonthermal radiation of the Vaidya–Bonner–de Sitter black hole is investigated. The energy condition for the occurrence of the Starobinsky–Unruh process is obtained. The event horizon surface gravity and the Hawking temperature on the event horizon are also given.

Keywords

quantum nonthermal radiation / Hamilton–Jacobi equation / new tortoise coordinate transformation / Vaidya–Bonner–de Sitter black hole

Cite this article

Download citation ▾
Wei-Zhen Pan(潘伟珍), Xue-Jun Yang(杨学军), Guo-Xiang Yu(余国祥). Quantum nonthermal effect of the Vaidya–Bonner–de Sitter black hole. Front. Phys., 2014, 9(1): 94‒97 https://doi.org/10.1007/s11467-013-0383-z

References

[1] S. W. Hawking, Black hole explosions, Nature , 1974, 248(5443): 3010.1038/248030a0
[2] S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. , 1975, 43(3): 19910.1007/BF02345020
[3] R. G. Cai and L. M. Cao, Unified first law and the thermodynamics of the apparent horizon in the FRW universe, Phys. Rev. D , 2007, 75(6): 06400810.1103/PhysRevD.75.064008
[4] Z. Zhao, A universal method determining Hawking effect in spherically symmetric or plane-symmetric non-static spacetimes, Chin. Phys. Lett. , 1992, 9(9): 50110.1088/0256-307X/9/9/015
[5] S. A. Hayward, Quasi-local gravitational energy, Phys. Rev. D , 1994, 49(2): 83110.1103/PhysRevD.49.831
[6] J. R. Ren and R. Li, Unified first law and thermodynamics of dynamical black hole in n-dimensional Vaidya spacetime, Mod. Phys. Lett. A , 2008, 23(38): 326510.1142/S0217732308028831
[7] M. K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. , 2000, 85(24): 504210.1103/PhysRevLett.85.5042
[8] W. B. Liu, Massive radiation via tunneling in a BTZ black hole, Int. J. Theor. Phys. , 2008, 47(7): 197910.1007/s10773-007-9641-6
[9] Q. Q. Jiang, S. Q.Wu, and X. Cai, Hawking radiation as tunneling from the Kerr and Kerr–Newman black holes, Phys. Rev. D , 2006, 73(6): 06400310.1103/PhysRevD.73.064003
[10] D. Y. Chen, Q. Q. Jiang, and X. T. Zu, Hawking radiation of Dirac particles via tunnelling from rotating black holes in de Sitter spaces, Phys. Lett. B , 2008, 665(2-3): 10610.1016/j.physletb.2008.05.064
[11] J. Y. Zhang and Z. Zhao, Hawking radiation of charged particles via tunneling from the Reissner–Nordstr?m black hole, J. High Energy Phys. , 2005, 10: 055
[12] J. Y. Zhang and Z. Zhao, Massive particles’ black hole tunneling and de Sitter tunneling, Nucl. Phys. B , 2005, 725(1-2): 17310.1016/j.nuclphysb.2005.07.024
[13] S. Z. Yang and D. Y. Chen, Tunnelling effect of the nonstationary Kerr black hole, Chin. Phys. B , 2008, 17(3): 81710.1088/1674-1056/17/3/014
[14] W. B. Liu, Massive tunneling in static black holes, Il. Nuovo. Cimento. B , 2007, 122: 59
[15] C. Z. Liu, J. Y. Zhang, and Z. Zhao, Charged particles’ tunneling from a dilaton black hole, Phys. Lett. B , 2006, 639(6): 67010.1016/j.physletb.2006.07.023
[16] C. Z. Liu, Hawking radiation via tunneling of massive particles from a gravity’s rainbow, Mod. Phys. Lett. A , 2010, 25(38): 322910.1142/S0217732310034341
[17] K. Srinivasan and T. Padmanabhan, Particle production and complex path analysis, Phys. Rev. D , 1999, 60(2): 02400710.1103/PhysRevD.60.024007
[18] M. Angheben, M. Nadalini, L. Vanzo and S. Zerbini, Hawking radiation as tunneling for extremal and rotating Black holes, J. High Energy Phys. , 2005, 05: 014
[19] M. Nadalini, L. Vanzo, and S. Zerbini, Hawking Radiation as Tunneling: the D-dimensional rotating case, J. Phys. A , 2006, 39(21): 660110.1088/0305-4470/39/21/S59
[20] S. Z. Yang and D. Y. Chen, Hawking radiation as tunneling from the Vaidya–Bonner black hole, Int. J. Theor. Phys. , 2007, 46(11): 292310.1007/s10773-007-9404-4
[21] H. Ding and W. B. Liu, Hawking radiation from a Vaidya black hole by Hamilton–Jacobi method, Front. Phys. , 2011, 6(1): 10610.1007/s11467-010-0114-7
[22] A. A. Starobinsky, Amplification of waves during reflection from a rotating black hole, Sov. Phys. JETP , 1973, 37(1): 28
[23] W. G. Unruh, Second quantization in the Kerr metric, Phys. Rev. D , 1974, 10(10): 319410.1103/PhysRevD.10.3194
[24] S. Z. Yang and L. B. Lin, The quantum nonthermal effect of a nonstationary Kerr–Newman black hole and the average range of the effective particles, Chin. Phys. B , 2002, 11(6): 619
[25] Q. M. Meng, S. Wang, J. J. Jiang, and D. L. Deng, Thermal radiation and nonthermal radiation of the slowly changing dynamic Kerr–Newman black hole, Chin. Phys. B , 2008, 17(8): 281110.1088/1674-1056/17/8/011
[26] W. Z. Pan, X. J. Yang, and Z. K. Xie, Hawking effect and quantum nonthermal radiation of an arbitrarily accelerating charged black hole using a new tortoise coordinate transformation, Chin. Phys. B , 2011, 20(4): 04970110.1088/1674-1056/20/4/049701
[27] S. Z. Yang, Discussion on the characteristics of the quantum radiation of unstationary and slowly-changing Reissner–Nordstr?m black hole, Acta Phys. Sin. , 2004, 53(11): 4007(in Chinese)
[28] H. L. Li and S. Z. Yang, Fermion tunneling of charged particles from a non-static black hole in de Sitter space, Chin. Phys. B , 2009, 18(11): 472110.1088/1674-1056/18/11/019
[29] Z. Zhao, J. Yang, and W. B. Liu, New tortoise coordinates to research temperature of dynamical black holes, J. Beijing Normal University (Natural Science Edition) , 2010, 46(1): 32 (in Chinese)
[30] B. Liu and W. B. Liu, The thermodynamics in a dynamical black hole, Front. Phys. China , 2009, 4(1): 9410.1007/s11467-009-0002-1
[31] Z. Zhao, Thermal Properties of Black Holes and Singularities of Space-times, Beijing: Beijing Normal University Press, 1999 (in Chinese)
[32] J. Deng, Q. Q. Jiang, Z. W. Feng, and G. P. Li, Entroy of Vaidya–Bonner–de Sitter black hole with a new general tortoise coordinates, J. Sichuan University (Natural Science Edition) , 2012, 49(1): 146(in Chinese)
[33] K. Lin and S. Z. Yang, A new method of researching fermion tunneling from the Vaidya–Bonner–de Sitter black hole, Chin. Phys. B , 2009, 18(6): 215410.1088/1674-1056/18/6/008
[34] Y. Mang and S. Z. Yang, Hawking radiation of charged dirac particles in Vaidya–Bonner–de Sitter space-time, Acta Phys. Sin. , 1997, 46(11): 2280(in Chinese)
AI Summary AI Mindmap
PDF(167 KB)

Accesses

Citations

Detail

Sections
Recommended

/