On physics beyond standard model
Yang Hu (胡杨), You-Kai Wang (王由凯), Peng-Fei Yin (殷鹏飞), Shou-Hua Zhu (朱守华)
On physics beyond standard model
In this review we do not try to cover all the aspects of physics beyond the standard model (BSM), instead our latest understandingon the BSM will be presented: i) The Higgs sector is likely related to BSM, which can be confirmed at current running large hadron collider (LHC) or the future colliders. Furthermore we pointed out that spontaneous CP violation can be closely related to the lightness of the Higgs boson. ii) Top quark forward-backward asymmetry, which was measured by Tevatron, might be the sign of BSM. We proposed a new color-octet particle ZC to account for the observation and ZC can be further studied at the LHC. iii) If dark matter (DM) is utilized to accommodate astrophysical observations, it ought to be observed at the high energy LHC and DM produced at colliders should be the smoking gun signal. iv) Lithium puzzle might also be the sign of the BSM. We briefly review the newly proposed solution to Lithium puzzle, i.e., the existence of non-thermal component during the big bang nuclei-synthesis (BBN). The possible origins of the non-thermal component can be dark matter or the new accelerating mechanism of normal particles.
Higgs boson / physics beyond standard model / dark matter / top quark / CP violation
[ait1] |
S. H. Zhu, Recent progress in physics beyond the standard model, Front. Phys., 2013, 8(3): 241
CrossRef
ADS
Google scholar
|
[ait2] |
G. Aad,
CrossRef
ADS
Google scholar
|
[ait3] |
S. Chatrchyan,
|
[ait4] |
T. Li, X. Wan, Y.-K. Wang, and S.-H. Zhu, Constraints on the universal varying Yukawa couplings: from SM-like to fermiophobic, J. High Energy Phys., 2012, 1209: 086, arXiv: 1203.5083 [hep-ph]
|
[ait5] |
S. H. Zhu, Complex vacuum and lightness of Higgs boson, arXiv: 1211.2370 [hep-ph], 2012
|
[ait6] |
A. Sakharov, Quark-muonic currents and violation of CP invariance, Pisma Zh. Eksp. Teor. Fiz., 1967, 5: 32
|
[ait7] |
A. Riotto and M. Trodden, Recent progress in baryogenesis, Ann. Rev. Nucl. Part. Sci., 1999, 49: 35, arXiv: hepph/ 9901362
|
[ait8] |
T. Lee, A theory of spontaneous T violation, Phys. Rev. D, 1973, 8(4): 1226
CrossRef
ADS
Google scholar
|
[ait9] |
T. Lee, CP nonconservation and spontaneous symmetry breaking, Phys. Rep., 1974, 9(2): 143
CrossRef
ADS
Google scholar
|
[ait10] |
C. Huang and S. H. Zhu, Erratum:
|
[ait11] |
C. S. Huang, W. Liao, Q. S. Yan, and S. H. Zhu, Rare decay
|
[ait12] |
S. Weinberg, Gauge theory of CP nonconservation, Phys. Rev. Lett., 1976, 37(11): 657
CrossRef
ADS
Google scholar
|
[ait13] |
G. C. Branco, Spontaneous CP nonconservation and natural flavor conservation: A minimal model, Phys. Rev. D, 1980, 22(11): 2901
CrossRef
ADS
Google scholar
|
[ait14] |
K. Shizuya and S. Tye, Higgs-particle mixing and CP violation, Phys. Rev. D, 1981, 23(7): 1613
CrossRef
ADS
Google scholar
|
[ait15] |
S. Zhu, Complete next-to-leading order QCD corrections to charged Higgs boson associated production with top quark at the CERN large hadron collider, Phys. Rev. D, 2003, 67(7): 075006, arXiv: hep-ph/0112109
CrossRef
ADS
Google scholar
|
[ait16] |
Q.-H. Cao, X. Wan, X.-P. Wang and S.-H. Zhu, Searching for charged Higgs boson in polarized top quark, Phys. Rev. D, 2013, 87: 055022, arXiv:1301.6608 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait17] |
T. Aaltonen,
CrossRef
ADS
Google scholar
|
[ait18] |
V. M. Abazov,
|
[ait19] |
T. Aaltonen,
|
[ait20] |
G. Aad,
|
[ait21] |
S. Chatrchyan,
|
[ait22] |
J. H. Kuhn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D, 1999, 59(5): 054017, arXiv: hep-ph/9807420
CrossRef
ADS
Google scholar
|
[ait23] |
W. Bernreuther and Z. G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC, Nucl. Phys. B, 2010, 837(1-2): 90, arXiv: 1003.392
|
[ait24] |
V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak, and L. L. Yang, The top-pair forward-backward asymmetry beyond NLO, Phys. Rev. D, 2011, 84(7): 074004, arXiv: 1106.6051
CrossRef
ADS
Google scholar
|
[ait25] |
M. Czakon, P. Fiedler, A. Mitov, and J. Rojo, Further exploration of top pair hadroproduction at NNLO, arXiv: 1305.3892, 2013
|
[ait26] |
S. Jung, H. Murayama, A. Pierce, and J. D.Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D, 2010, 81(1): 015004, arXiv: 0907.4112
CrossRef
ADS
Google scholar
|
[ait27] |
K. Cheung, W. Y. Keung, and T. C. Yuan, Top quark forward-backward asymmetry, Phys. Lett. B, 2009, 682(3): 287, 0908.258
|
[ait28] |
P. H. Frampton, J. Shu, and K. Wang, Axigluon as possible explanation for
|
[ait29] |
J. Shu, K. Wang, and G. Zhu, A revisit to top quark forwardbackward asymmetry, Phys. Rev. D, 2012, 85: 034008, arXiv: 1104.0083
CrossRef
ADS
Google scholar
|
[ait30] |
B. Xiao, Y. Wang, and S. Zhu, Forward-backward asymmetry and differential cross section of top quark in flavor violating Z_ model at O(
CrossRef
ADS
Google scholar
|
[ait31] |
S. Chatrchyan,
|
[ait32] |
B. Xiao, Y. K. Wang, Z. Q. Zhou, and S. Zhu, Edge charge asymmetry in top pair production at the LHC, Phys. Rev. D2011, 83(5): 057503, arXiv: 1101.250
|
[ait33] |
H. Wang, Y. Wang, B. Xiao, and S.-H. Zhu, New coloroctet axial vector boson revisited, Phys. Rev. D, 2011, 84(9): 094019, 1107.576
|
[ait34] |
T. Li, X. Wan, Y. K. Wang, and S.-H. Zhu, Distinguishing the color octet axial-vector-like particle for top quark asymmetry via color flow method at the LHC, arXiv: 1306.3586, 2013
|
[ait35] |
J. Gallicchio and M. D. Schwartz, Seeing in color: Jet superstructure, Phys. Rev. Lett., 2010, 105(2): 022001, arXiv: 1001.5027
CrossRef
ADS
Google scholar
|
[ait36] |
F. Zwicky, Spectral displacement of extra galactic nebulae, Helv. Phys. Acta, 1933, 6: 110
|
[ait37] |
H. W. Babcock, The rotation of the andromeda nebula, Lick. Observatory. Bulletin, 1939, 19: 41
|
[ait38] |
V. C. Rubin, W. K. Jr. Ford, and N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from
|
[ait39] |
V. C. Rubin, D. Burstein, W. K. Jr. Ford, and N. Thonnard, Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties, Astrophys. J., 1985, 289: 81
CrossRef
ADS
Google scholar
|
[ait40] |
D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J., 2006, 648(2): L109, arXiv: astro-ph/0608407
CrossRef
ADS
Google scholar
|
[ait41] |
G. Hinshaw,
|
[ait42] |
P. A. R. Ade,
|
[ait43] |
A. G. Riess,
CrossRef
ADS
Google scholar
|
[ait44] |
S. Perlmutter,
CrossRef
ADS
Google scholar
|
[ait45] |
B. A. Reid, W. J. Percival, D. J. Eisenstein, L. Verde,
|
[ait46] |
B. A. Reid, L. Samushia, M. White, W. J. Percival,
|
[ait47] |
M. Taoso, G. Bertone, and A. Masiero, Dark matter candidates: A ten-point test, J. cosmol. Astropart. Phys., 2008, 0803: 022, arXiv: 0711.4996 [astro-ph]
|
[ait48] |
G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rep., 2005, 405(5-6): 279, arXiv: hep-ph/0404175
CrossRef
ADS
Google scholar
|
[ait49] |
E. W. Kolb and M. S. Turner, The Early Universe, New York: Addison-Wesley, 1990
|
[ait50] |
G. Jungman, M. Kamionkowski, and K. Griest, Supersymmetric dark matter, Phys. Rep., 1996, 267(5-6): 195, arXiv: hep-ph/9506380
CrossRef
ADS
Google scholar
|
[ait51] |
D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Phys. Rep., 2007, 453(2-4): 29, arXiv: hep-ph/0701197
|
[ait52] |
S. Dodelson and L. M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett., 1994, 72(1): 17, arXiv: hepph/ 9303287
|
[ait53] |
X. D. Shi and G. M. Fuller, A New dark matter candidate: Nonthermal sterile neutrinos, Phys. Rev. Lett., 1999, 82(14): 2832, arXiv: astro-ph/9810076
CrossRef
ADS
Google scholar
|
[ait54] |
S. J. Asztalos, L. J. Rosenberg, K. van Bibber, P. Sikivie, and K. Zioutas, Searches for astrophysical and cosmological axions, Ann. Rev. Nucl. Part. Sci., 2006, 56(1): 293
CrossRef
ADS
Google scholar
|
[ait55] |
M. W. Goodman and E. Witten, Detectability of certain dark matter candidates, Phys. Rev. D, 1985, 31(12): 3059
CrossRef
ADS
Google scholar
|
[ait56] |
R. Bernabei,
CrossRef
ADS
Google scholar
|
[ait57] |
C. E. Aalseth,
CrossRef
ADS
Google scholar
|
[ait58] |
G. Angloher, M. Bauer, I. Bavykina, A. Bento,
|
[ait59] |
C. Savage, G. Gelmini, P. Gondolo, and K. Freese, Compatibility of DAMA/LIBRA dark matter detection with other searches, J. Cosmol. Astropart. Phys., 2009, 0904: 010, arXiv: 0808.3607 [astro-ph]
|
[ait60] |
S. Chang, A. Pierce, and N. Weiner, Using the energy spectrum at DAMA/LIBRA to probe light dark matter, Phys. Rev. D, 2009, 79: 115011, arXiv: 0808.0196 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait61] |
J. Angle,
CrossRef
ADS
Google scholar
|
[ait62] |
E. Aprile,
CrossRef
ADS
Google scholar
|
[ait63] |
D. Hooper, J. I. Collar, J. Hall, D. McKinsey, and C. Kelso, A consistent dark matter interpretation for CoGeNT and DAMA/LIBRA, Phys. Rev. D, 2010, 82: 123509, arXiv: 1007.1005 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait64] |
P. J. Fox, J. Liu, and N. Weiner, Integrating out astrophysical uncertainties, Phys. Rev. D, 2011, 83: 103514, arXiv: 1011.1915 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait65] |
T. Schwetz, Direct detection data and possible hints for lowmass WIMPs, PoS IDM, 2011, 2010: 070, arXiv: 1011.5432 [hep-ph]
|
[ait66] |
D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D, 2001, 64(4): 043502, arXiv: hep-ph/0101138
CrossRef
ADS
Google scholar
|
[ait67] |
S. Chang, G. D. Kribs, D. Tucker-Smith, and N. Weiner, Inelastic dark matter in light of DAMA/LIBRA, Phys. Rev. D, 2009, 79: 043513, arXiv: 0807.2250 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait68] |
J. L. Feng, J. Kumar, D. Marfatia, and D. Sanford, Isospinviolating dark matter, Phys. Lett. B, 2011, 703: 124, arXiv: 1102.4331 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait69] |
Z. Ahmed,
CrossRef
ADS
Google scholar
|
[ait70] |
Z. Ahmed,
CrossRef
ADS
Google scholar
|
[ait71] |
E. Armengaud,
CrossRef
ADS
Google scholar
|
[ait72] |
M. Felizardo, T. A. Girard, T. Morlat, A. C. Fernandes,
CrossRef
ADS
Google scholar
|
[ait73] |
D. Y. Akimov, H. M. Araujo, E. J. Barnes, V. A. Belov,
CrossRef
ADS
Google scholar
|
[ait74] |
O. Buchmueller,
CrossRef
ADS
Google scholar
|
[ait75] |
C. Strege,
|
[ait76] |
A. Fowlie,
CrossRef
ADS
Google scholar
|
[ait77] |
E. Aprile [XENON1T Collaboration], The XENON1T dark matter search experiment, arXiv: 1206.6288 [astro-ph.IM], 2012
|
[ait78] |
E. Aprile,
|
[ait79] |
J. Angle, E. Aprile, F. Arneodo, L. Baudis,
CrossRef
ADS
Google scholar
|
[ait80] |
Z. Ahmed,
CrossRef
ADS
Google scholar
|
[ait81] |
S. Archambault,
CrossRef
ADS
Google scholar
|
[ait82] |
E. Behnke,
CrossRef
ADS
Google scholar
|
[ait83] |
S. C. Kim, H. Bhang, J. H. Choi, W. G. Kang,
CrossRef
ADS
Google scholar
|
[ait84] |
M. G. Aartsen,
CrossRef
ADS
Google scholar
|
[ait85] |
E. A. Baltz and J. Edsjo, Positron propagation and fluxes from neutralino annihilation in the halo, Phys. Rev. D, 1998, 59(2): 023511, arXiv: astro-ph/9808243
CrossRef
ADS
Google scholar
|
[ait86] |
I. V. Moskalenko and A. W. Strong, Production and propagation of cosmic ray positrons and electrons, Astrophys. J., 1998, 493(2): 694, arXiv: astro-ph/9710124
CrossRef
ADS
Google scholar
|
[ait87] |
I. V. Moskalenko and A. W. Strong, Positrons from particle dark-matter annihilation in the galactic halo: propagation green’s functions, Phys. Rev. D, 1999, 60(6): 063003, arXiv: astro-ph/9905283
CrossRef
ADS
Google scholar
|
[ait88] |
A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Cosmicray propagation and interactions in the Galaxy, Ann. Rev. Nucl. Part. Sci., 2007, 57(1): 285, arXiv: astro-ph/0701517
|
[ait89] |
S. W. Barwick,
CrossRef
ADS
Google scholar
|
[ait90] |
S. Coutu,
|
[ait91] |
M. Aguilar,
|
[ait92] |
O. Adriani,
CrossRef
ADS
Google scholar
|
[ait93] |
M. Aguilar,
CrossRef
ADS
Google scholar
|
[ait94] |
J. Chang, J. H. Adams, H. S. Ahn, G. L. Bashindzhagyan, M. Christl, O. Ganel, T. G. Guzik, J. Isbert, K. C. Kim, E. N. Kuznetsov, M. I. Panasyuk, A. D. Panov, W. K. H. Schmidt, E. S. Seo, N. V. Sokolskaya, J. W. Watts, J. P. Wefel, J. Wu, and V. I. Zatsepin, An excess of cosmic ray electrons at energies of 300-800 GeV, Nature, 2008, 456(7220): 362
CrossRef
ADS
Google scholar
|
[ait95] |
M. Ackermann,
|
[ait96] |
F. Aharonian,
CrossRef
ADS
Google scholar
|
[ait97] |
F. Aharonian,
CrossRef
ADS
Google scholar
|
[ait98] |
M. Ackermann,
CrossRef
ADS
Google scholar
|
[ait99] |
O. Adriani,
CrossRef
ADS
Google scholar
|
[ait100] |
O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti,
|
[ait101] |
M. Cirelli, M. Kadastik, M. Raidal and A. Strumia, Modelindependent implications of the e+, e-, anti-proton cosmic ray spectra on properties of Dark Matter, Nucl. Phys. B, 2009, 813: 1, arXiv: 0809.2409 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait102] |
T. Delahaye, R. Lineros, F. Donato, N. Fornengo and P. Salati, Positrons from dark matter annihilation in the galactic halo: Theoretical uncertainties, Phys. Rev. D, 2008, 77: 063527, arXiv: 0712.2312 [astro-ph]
CrossRef
ADS
Google scholar
|
[ait103] |
T. Delahaye, F. Donato, N. Fornengo, J. Lavalle, R. Lineros, P. Salati and R. Taillet, Galactic secondary positron flux at the Earth, Astron. Astrophys., 2009, 501: 821, arXiv: 0809.5268 [astro-ph]
CrossRef
ADS
Google scholar
|
[ait104] |
J. Liu, Q. Yuan, X. J. Bi, H. Li and X. Zhang, A Markov chain Monte Carlo study on dark matter property related to the cosmic e± excesses, Phys. Rev. D, 2010, 81: 023516, arXiv: 0906.3858 [astro-ph.CO]
CrossRef
ADS
Google scholar
|
[ait105] |
J. Liu, Q. Yuan, X. J. Bi, H. Li, and X. Zhang, Cos-RayMC: A global fitting method in studying the properties of the new sources of cosmic e± excesses, Phys. Rev. D, 2012, 85: 043507, arXiv: 1106.3882 [astro-ph.CO]
CrossRef
ADS
Google scholar
|
[ait106] |
Q. Yuan, X. J. Bi, G. M. Chen, Y.Q. Guo, S. J. Lin, and X. Zhang, Implications of the AMS-02 positron fraction in cosmic rays, arXiv: 1304.1482 [astro-ph.HE], 2013
|
[ait107] |
D. Hooper, A. Stebbins, and K. M. Zurek, Excesses in cosmic ray positron and electron spectra from a nearby clump of neutralino dark matter, Phys. Rev. D, 2009, 79: 103513, arXiv: 0812.3202 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait108] |
X.-J. Bi, R. Brandenberger, P. Gondolo, T.-J. Li, Q. Yuan, and X.-M. Zhang, Non-thermal production of WIMPs, cosmic e± excesses and gamma-rays from the galactic center, Phys. Rev. D, 2009, 80: 103502, arXiv: 0905.1253 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait109] |
D. Feldman, Z. Liu, and P. Nath, PAMELA positron excess as a signal from the hidden sector, Phys. Rev. D, 2009, 79: 063509, arXiv: 0810.5762 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait110] |
M. Ibe, H. Murayama, and T. T. Yanagida, Breit-Wigner enhancement of dark matter annihilation, Phys. Rev. D, 2009, 79: 095009: arXiv: 0812.0072 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait111] |
W.-L. Guo and Y.-L. Wu, Enhancement of dark matter annihilation via Breit-Wigner resonance, Phys. Rev. D, 2009, 79: 055012, arXiv: 0901.1450 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait112] |
M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B, 2009, 671: 391, arXiv: 0810.1502 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait113] |
N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, A theory of dark matter, Phys. Rev. D, 2009, 79: 015014, arXiv: 0810.0713 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait114] |
P.-F. Yin, Q. Yuan, J. Liu, J. Zhang, X.-J. Bi, S.-H. Zhu, and X.-M. Zhang, PAMELA data and leptonically decaying dark matter, Phys. Rev. D, 2009, 79: 023512, arXiv: 0811.0176 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait115] |
K. Ishiwata, S. Matsumoto, and T. Moroi, Cosmic-ray positron from superparticle dark matter and the PAMELA anomaly, Phys. Lett. B, 2009, 675: 446, arXiv: 0811.0250 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait116] |
A. Ibarra and D. Tran, Decaying dark matter and the PAMELA anomaly, J. Cosmol. Astropart. Phys., 2009, 0902: 021, arXiv: 0811.1555 [hep-ph]
|
[ait117] |
C.-R. Chen, M. M. Nojiri, F. Takahashi, and T. T. Yanagida, Decaying hidden gauge boson and the PAMELA and ATIC/PPB-BETS anomalies, Prog. Theor. Phys., 2009, 122: 553, arXiv: 0811.3357 [astro-ph]
CrossRef
ADS
Google scholar
|
[ait118] |
A. Arvanitaki, S. Dimopoulos, S. Dubovsky, P. W. Graham, R. Harnik, and S. Rajendran, Astrophysical probes of unification, Phys. Rev. D, 2009, 79: 105022, arXiv: 0812.2075 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait119] |
D. Hooper, P. Blasi, and P. D. Serpico, Pulsars as the sources of high energy cosmic ray positrons, J. Cosmol. Astropart. Phys., 2009, 0901: 025, arXiv: 0810.1527 [astro-ph]
|
[ait120] |
H. Yuksel, M. D. Kistler, and T. Stanev, TeV gamma rays from geminga and the origin of the GeV positron excess, Phys. Rev. Lett., 2009, 103: 051101, arXiv: 0810.2784 [astroph]
CrossRef
ADS
Google scholar
|
[ait121] |
S. Profumo, Dissecting cosmic-ray electron-positron data with Occam’s Razor: The role of known Pulsars, Central Eur. J. Phys., 2011, 10: 1, arXiv: 0812.4457 [astro-ph]
CrossRef
ADS
Google scholar
|
[ait122] |
D. Malyshev, I. Cholis, and J. Gelfand, Pulsars versus dark matter interpretation of ATIC/PAMELA, Phys. Rev. D, 2009, 80: 063005, arXiv: 0903.1310 [astro-ph.HE]
CrossRef
ADS
Google scholar
|
[ait123] |
T. Linden and S. Profumo, Probing the pulsar origin of the anomalous positron fraction with AMS-02 and atmospheric cherenkov telescopes, arXiv: 1304.1791 [astro-ph.HE], 2013
|
[ait124] |
I. Cholis and D. Hooper, Dark matter and pulsar origins of the rising cosmic ray positron fraction in light of new data from AMS, arXiv: 1304.1840 [astro-ph.HE], 2013
|
[ait125] |
P. F. Yin, Z. H. Yu, Q. Yuan, and X. J. Bi, Pulsar interpretation for the AMS-02 result, arXiv: 1304.4128 [astro-ph.HE], 2013
|
[ait126] |
L. Bergstrom, P. Ullio, and J. H. Buckley, Observability of gamma-rays from dark matter neutralino annihilations in the Milky Way halo, Astropart. Phys., 1998, 9(2): 137, arXiv: astro-ph/9712318
CrossRef
ADS
Google scholar
|
[ait127] |
J. F. Navarro, C. S. Frenk, and S. D. M. White, The Structure of cold dark matter halos, Astrophys. J., 1996, 462: 563, arXiv: astro-ph/9508025
CrossRef
ADS
Google scholar
|
[ait128] |
M. Ackermann,
CrossRef
ADS
Google scholar
|
[ait129] |
A. Geringer-Sameth and S. M. Koushiappas, Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi, Phys. Rev. Lett., 2011, 107: 241303, arXiv: 1108.2914 [astro-ph.CO]
CrossRef
ADS
Google scholar
|
[ait130] |
I. Cholis and P. Salucci, Extracting limits on Dark Matter annihilation from gamma-ray observations towards dwarf spheroidal galaxies, Phys. Rev. D, 2012, 86: 023528, arXiv: 1203.2954 [astro-ph.HE]
CrossRef
ADS
Google scholar
|
[ait131] |
M. N. Mazziotta, F. Loparco, F. de Palma, and N. Giglietto, A model independent analysis of the Fermi Large Area Telescope gamma-ray data from the Milky Way dwarf galaxies and halo to constrain dark matter scenarios, arXiv: 1203.6731 [astro-ph.IM], 2012
|
[ait132] |
Y.-L. S. Tsai, Q. Yuan, and X. Huang, A generic method to constrain the dark matter model parameters from Fermi observations of dwarf spheroids, J. Cosmol. Astropart. Phys., 2013, 1303: 018, arXiv: 1212.3990 [astro-ph.HE]
|
[ait133] |
M. Ackermann,
|
[ait134] |
Q. Yuan, P.-F. Yin, X.-J. Bi, X.-M. Zhang, and S.-H. Zhu, Gamma rays and neutrinos from dark matter annihilation in galaxy clusters, Phys. Rev. D, 2010, 82: 023506, arXiv: 1002.0197 [astro-ph.HE]
CrossRef
ADS
Google scholar
|
[ait135] |
L. Dugger, T. E. Jeltema, and S. Profumo, Constraints on decaying dark matter from fermi observations of nearby galaxies and clusters, J. Cosmol. Astropart. Phys., 2010, 1012: 015, arXiv: 1009.5988 [astro-ph.HE]
|
[ait136] |
S. Ando and D. Nagai, Fermi-LAT constraints on dark matter annihilation cross section from observations of the Fornax cluster, J. Cosmol. Astropart. Phys., 2012, 1207: 017, arXiv: 1201.0753 [astro-ph.HE]
|
[ait137] |
J. Ke, M. Luo, L. Wang, and G. Zhu, Gamma-rays from nearby clusters: Constraints on selected decaying dark matter models, Phys. Lett. B, 2011, 698: 44, arXiv: 1101.5878 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait138] |
X. Huang, G. Vertongen, and C. Weniger, Probing dark matter decay and annihilation with Fermi LAT observations of nearby galaxy clusters, J. Cosmol. Astropart. Phys., 2012, 1201: 042, arXiv: 1110.1529 [hep-ph]
|
[ait139] |
M. Ackermann,
CrossRef
ADS
Google scholar
|
[ait140] |
J. Zhang, Q. Yuan, and X.-J. Bi, Galactic diffuse gamma rays-recalculation based on the new measurements of cosmic electron spectrum, Astrophys. J., 2010, 720: 9, arXiv: 0908.1236 [astro-ph.HE]
CrossRef
ADS
Google scholar
|
[ait141] |
M. Papucci and A. Strumia, Robust implications on Dark Matter from the first FERMI sky gamma map, J. Cosmol. Astropart. Phys., 2010, 1003: 014, arXiv: 0912.0742 [hepph]
|
[ait142] |
L. Zhang, C. Weniger, L. Maccione, J. Redondo, and G. Sigl, Constraining decaying dark matter with Fermi LAT gammarays, J. Cosmol. Astropart. Phys., 2010, 1006: 027, arXiv: 0912.4504[astro-ph.HE]
|
[ait143] |
P. D. Serpico and D. Hooper, Gamma-rays from dark matter annihilation in the central region of the galaxy, New J. Phys., 2009, 11: 105010, arXiv: 0902.2539 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait144] |
J. Ellis, K. A. Olive, and V. C. Spanos, Galactic-centre gamma rays in CMSSM dark matter scenarios, J. Cosmol. Astropart. Phys., 2011, 1110: 024, arXiv: 1106.0768 [hep-ph]
|
[ait145] |
T. Cohen, M. Lisanti, T. R. Slatyer, and J. G. Wacker, Illuminating the 130 GeV gamma line with continuum photons, J. High Energy Phys., 2012, 1210: 134, arXiv: 1207.0800 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait146] |
I. Cholis, M. Tavakoli, and P. Ullio, Searching for the continuum spectrum photons correlated to the 130 GeV gamma-ray line, Phys. Rev. D, 2012, 86(8): 083525, arXiv: 1207.1468 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait147] |
X.-Y. Huang, Q. Yuan, P.-F. Yin, X.-J. Bi, and X.-L. Chen, Constraints on the dark matter annihilation scenario of Fermi 130 GeV γ-ray line emission by continuous gammarays, MilkyWay halo, galaxy clusters and dwarf galaxies observations, J. Cosmol. Astropart. Phys., 2012, 1211: 048, arXiv: 1208.0267 [astro-ph.HE]
|
[ait148] |
D. Hooper and L. Goodenough, Dark matter annihilation in the galactic center as seen by the Fermi gamma ray space telescope, Phys. Lett. B, 2011, 697: 412, arXiv: 1010.2752 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait149] |
D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D, 2011, 84: 123005, arXiv: 1110.0006 [astro-ph.HE]
CrossRef
ADS
Google scholar
|
[ait150] |
L. Bergstrom and H. Snellman, Observable monochromatic photons from cosmic photino annihilation, Phys. Rev. D, 1988, 37(12): 3737
CrossRef
ADS
Google scholar
|
[ait151] |
S. Rudaz, On the annihilation of heavy neutral fermion pairs into monochromatic gamma-rays and its astrophysical implications, Phys. Rev. D, 1989, 39(12): 3549
CrossRef
ADS
Google scholar
|
[ait152] |
L. Bergstrom and P. Ullio, Full one loop calculation of neutralino annihilation into two photons, Nucl. Phys. B, 1997, 504(1-2): 27, arXiv: hep-ph/9706232
|
[ait153] |
P. Ullio and L. Bergstrom, Neutralino annihilation into a photon and a Z boson, Phys. Rev. D, 1998, 57(3): 1962, arXiv: hep-ph/9707333
CrossRef
ADS
Google scholar
|
[ait154] |
T. Bringmann, X. Huang, A. Ibarra, S. Vogl, and C. Weniger, Fermi LAT search for internal Bremsstrahlung signatures from dark matter annihilation, J. Cosmol. Astropart. Phys., 2012, 1207: 054, arXiv: 1203.1312 [hep-ph]
|
[ait155] |
C. Weniger, A tentative gamma-ray line from dark matter annihilation at the Fermi large area telescope, J. Cosmol. Astropart. Phys., 2012, 1208: 007, arXiv: 1204.2797 [hep-ph]
|
[ait156] |
E. Tempel, A. Hektor, and M. Raidal, Fermi 130 GeV gamma-ray excess and dark matter annihilation in subhaloes and in the Galactic centre, J. Cosmol. Astropart. Phys., 2012, 1209: 032 [Addendum-ibid., 2012, 1211: A01], arXiv: 1205.1045 [hep-ph]
|
[ait157] |
A. Boyarsky, D. Malyshev, and O. Ruchayskiy, Spectral and spatial variations of the diffuse gamma-ray background in the vicinity of the Galactic plane and possible nature of the feature at 130 GeV, arXiv: 1205.4700 [astro-ph.HE], 2012
|
[ait158] |
M. Su and D. P. Finkbeiner, Strong evidence for gammaray line emission from the inner galaxy, arXiv: 1206.1616 [astro-ph.HE], 2012
|
[ait159] |
Fermi-LAT Collaboration, Search for gamma-ray spectral lines with the Fermi large area telescope and dark matter implications, arXiv: 1305.5597 [astro-ph.HE], 2013
|
[ait160] |
J. Faulkner and R. L. Gilliland, Weakly interacting, massive particles and the solar neutrino flux, Astrophys. J., 1985, 299: 994
CrossRef
ADS
Google scholar
|
[ait161] |
W. H. Press and D. N. Spergel, Capture by the sun of a galactic population of weakly interacting massive particles, Astrophys. J., 1985, 296: 679
CrossRef
ADS
Google scholar
|
[ait162] |
J. Silk, K. A. Olive, and M. Srednicki, The Photino, the Sun and high-energy neutrinos, Phys. Rev. Lett., 1985, 55(2): 257
CrossRef
ADS
Google scholar
|
[ait163] |
A. Gould, Resonant enhancements in WIMP capture by the Earth, Astrophys. J., 1987, 321: 571
CrossRef
ADS
Google scholar
|
[ait164] |
A. Gould, Cosmological density of WIMPs from solar and terrestrial annihilations, Astrophys. J., 1992, 388: 338
CrossRef
ADS
Google scholar
|
[ait165] |
M. Cirelli, N. Fornengo, T. Montaruli, I. A. Sokalski, A. Strumia, and F. Vissani, Spectra of neutrinos from dark matter annihilations, Nucl. Phys. B, 2005, 727(1-2): 99 [Erratum-ibid. B, 2008, 790: 338], arXiv: hep-ph/0506298)
|
[ait166] |
M. Blennow, J. Edsjo, and T. Ohlsson, Neutrinos from WIMP annihilations using a full three-flavor Monte Carlo, J. Cosmol. Astropart. Phys., 2008, 0801: 021, arXiv: 0709.3898 [hep-ph]
|
[ait167] |
V. Barger, W. -Y. Keung, G. Shaughnessy, and A. Tregre, High energy neutrinos from neutralino annihilations in the Sun, Phys. Rev. D, 2007, 76: 095008, arXiv: 0708.1325 [hepph]
CrossRef
ADS
Google scholar
|
[ait168] |
M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D, 2007, 75(4): 043006, arXiv: astro-ph/0611418
CrossRef
ADS
Google scholar
|
[ait169] |
H. Yuksel, S. Horiuchi, J. F. Beacom, and S. ’i. Ando, Neutrino constraints on the dark matter total annihilation cross section, Phys. Rev. D, 2007, 76: 123506, arXiv: 0707.0196 [astro-ph]
CrossRef
ADS
Google scholar
|
[ait170] |
J. Liu, P.-F. Yin, and S.-H. Zhu, Prospects for detecting neutrino signals from annihilating/decaying dark matter to account for the PAMELA and ATIC results, Phys. Rev. D, 2009, 79: 063522, arXiv: 0812.0964 [astro-ph]
CrossRef
ADS
Google scholar
|
[ait171] |
A. E. Erkoca, G. Gelmini, M. H. Reno, and I. Sarcevic, Muon fluxes and showers from dark matter annihilation in the galactic center, Phys. Rev. D, 2010, 81: 096007, arXiv: 1002.2220 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait172] |
L. Covi, M. Grefe, A. Ibarra, and D. Tran, Neutrino signals from dark matter decay, J. Cosmol. Astropart. Phys., 2010, 1004: 017, arXiv: 0912.3521 [hep-ph]
|
[ait173] |
A. E. Erkoca, G. Gelmini, M. H. Reno, and I. Sarcevic, Muon fluxes and showers from dark matter annihilation in the galactic center, Phys. Rev. D, 2010, 81: 096007, arXiv: 1002.2220 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait174] |
R. Abbasi,
CrossRef
ADS
Google scholar
|
[ait175] |
R. Abbasi,
|
[ait176] |
H. -C. Cheng, J. F. Gunion, Z. Han, G. Marandella, and B. McElrath, Mass determination in SUSY-like events with missing energy, J. High Energy Phys., 2007, 0712: 076, arXiv: 0707.0030 [hep-ph]
|
[ait177] |
M. Burns, K. Kong, K. T. Matchev, and M. Park, Using subsystem MT2 for complete mass determinations in decay chains with missing energy at hadron colliders, J. High Energy Phys., 2009, 0903: 143, arXiv: 0810.5576 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait178] |
A. J. Barr and C. G. Lester, A review of the mass measurement techniques proposed for the large hadron collider, J. Phys. G, 2010, 37: 123001, arXiv: 1004.2732 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait179] |
T. Han, I.-W. Kim, and J. Song, Kinematic cusps with two missing particles I: Antler decay topology, Phys. Rev. D, 2013, 87: 035003, 2012, arXiv: 1206.5633 [hep-ph]
|
[ait180] |
K. A. Olive, Colliders and Cosmology, In: Karlsruhe 2007, SUSY2007, 158-173, arXiv: 0709.3303 [hep-ph], 2007
|
[ait181] |
H. Baer and X. Tata, Dark matter and the LHC, arXiv: 0805.1905 [hep-ph], 2008
|
[ait182] |
H. Baer, X. Tata, and J. Woodside, Multi-lepton signals from supersymmetry at hadron super colliders, Phys. Rev. D, 1992, 45(1): 142
CrossRef
ADS
Google scholar
|
[ait183] |
D. Feldman, Z. Liu, and P. Nath, Sparticles at the LHC, J. High Energy Phys., 2008, 0804: 054, arXiv: 0802.4085 [hep-ph]
|
[ait184] |
C. Rogan, Kinematical variables towards new dynamics at the LHC, arXiv: 1006.2727 [hep-ph], 2010
|
[ait185] |
CMS Collaboration, Search for supersymmetry with the razor variables at CMS, CMS-PAS-SUS-12-005
|
[ait186] |
L. Randall and D. Tucker-Smith, Dijet searches for supersymmetry at the LHC, Phys. Rev. Lett., 2008, 101: 221803, arXiv: 0806.1049 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait187] |
S. Chatrchyan,
|
[ait188] |
C. G. Lester and D. J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B, 1999, 463: 99, arXiv: hep-ph/9906349
CrossRef
ADS
Google scholar
|
[ait189] |
A. Barr, C. Lester, and P. Stephens, mT2: The Truth behind the glamour, J. Phys. G, 2003, 29: 2343, arXiv: hepph/0304226
|
[ait190] |
S. Chatrchyan,
|
[ait191] |
G. Aad,
|
[ait192] |
J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H.-B. Yu, Constraints on dark matter from colliders, Phys. Rev. D, 2010, 82: 116010, arXiv: 1008.1783 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait193] |
T. Aaltonen,
|
[ait194] |
S. Chatrchyan,
|
[ait195] |
Y. Bai, P. J. Fox, and R. Harnik, The tevatron at the frontier of dark matter direct detection, J. High Energy Phys., 2010, 1012: 048, arXiv: 1005.3797 [hep-ph]
|
[ait196] |
P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D, 2012, 85: 056011, arXiv: 1109.4398 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait197] |
Q. -H. Cao, C. -R. Chen, C. S. Li, and H. Zhang, Effective dark matter model: Relic density, CDMS II, Fermi LAT and LHC, J. High Energy Phys., 2011, 1108: 018, arXiv: 0912.4511 [hep-ph]
|
[ait198] |
M. Beltran, D. Hooper, E. W. Kolb, and Z. C. Krusberg, Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics, Phys. Rev. D, 2009, 80: 043509, arXiv: 0808.3384 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait199] |
J.-M. Zheng, Z.-H. Yu, J.-W. Shao, X.-J. Bi, Z. Li, and H.-H. Zhang, Constraining the interaction strength between dark matter and visible matter: I. fermionic dark matter, Nucl. Phys. B, 2012, 854: 350, arXiv: 1012.2022[hep-ph]
CrossRef
ADS
Google scholar
|
[ait200] |
Z.-H. Yu, J.-M. Zheng, X.-J. Bi, Z. Li, D.-X. Yao, and H.- H. Zhang, Constraining the interaction strength between dark matter and visible matter: II. scalar, vector and spin-3/2 dark matter, Nucl. Phys. B, 2012, 860: 115, arXiv: 1112.6052 [hep-ph]
CrossRef
ADS
Google scholar
|
[ait201] |
C. E. Rolfs and W. S. Rodney, Cauldrons in the Cosmos: Nuclear Astrophysics, Chicago: University of Chicago Press, 1988
|
[ait202] |
Planck Collaboration, Planck 2013 results. I. Overview of products and scientific results, Astron. Astrophys., (submitted), arXiv:1303.5062
|
[ait203] |
R. V. Wagoner, W. A. Fowler, and F. Hoyle, On the synthesis of elements at very high temperatures, Astrophys. J., 1967, 148: 3
CrossRef
ADS
Google scholar
|
[ait204] |
A. Coc, S. Goriely, Y. Xu, M. Saimpert, and E. Vangioni, Standard big bang nucleosynthesis up to CNO with an improved extended nuclear network, Astrophys. J., 2012, 744(2): 158
CrossRef
ADS
Google scholar
|
[ait205] |
F. Hammache, M. Heil, S. Typel, D. Galaviz, K. Sümmerer, A. Coc, F. Uhlig, F. Attallah, M. Caamano, D. Cortina, H. Geissel, M. Hellström, N. Iwasa, J. Kiener, P. Koczon, B. Kohlmeyer, P. Mohr, E. Schwab, K. Schwarz, F. Schümann, P. Senger, O. Sorlin, V. Tatischeff, J. P. Thibaud, E. Vangioni, A. Wagner, and W. Walus, High-energy break-up of 6Li as a tool to study the Big-Bang nucleosynthesis reaction 2H(alpha,gamma)6Li, Phys. Rev. C, 2010, 82(6): 065803, arXiv: 1011.6179
CrossRef
ADS
Google scholar
|
[ait206] |
M.-M. Kang, Y. Hu, H.-B. Hu, and S.-H. Zhu, Cosmic rays during BBN as origin of lithium problem, J. Cosmol. Astropart. Phys., 2012, 1205: 011, arXiv: 1110.0163 [astroph. CO]
|
/
〈 | 〉 |