On physics beyond standard model

Yang Hu (胡杨), You-Kai Wang (王由凯), Peng-Fei Yin (殷鹏飞), Shou-Hua Zhu (朱守华)

PDF(909 KB)
PDF(909 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (5) : 516-539. DOI: 10.1007/s11467-013-0382-0
REVIEW ARTICLE
REVIEW ARTICLE

On physics beyond standard model

Author information +
History +

Abstract

In this review we do not try to cover all the aspects of physics beyond the standard model (BSM), instead our latest understandingon the BSM will be presented: i) The Higgs sector is likely related to BSM, which can be confirmed at current running large hadron collider (LHC) or the future colliders. Furthermore we pointed out that spontaneous CP violation can be closely related to the lightness of the Higgs boson. ii) Top quark forward-backward asymmetry, which was measured by Tevatron, might be the sign of BSM. We proposed a new color-octet particle ZC to account for the observation and ZC can be further studied at the LHC. iii) If dark matter (DM) is utilized to accommodate astrophysical observations, it ought to be observed at the high energy LHC and DM produced at colliders should be the smoking gun signal. iv) Lithium puzzle might also be the sign of the BSM. We briefly review the newly proposed solution to Lithium puzzle, i.e., the existence of non-thermal component during the big bang nuclei-synthesis (BBN). The possible origins of the non-thermal component can be dark matter or the new accelerating mechanism of normal particles.

Keywords

Higgs boson / physics beyond standard model / dark matter / top quark / CP violation

Cite this article

Download citation ▾
Yang Hu (胡杨), You-Kai Wang (王由凯), Peng-Fei Yin (殷鹏飞), Shou-Hua Zhu (朱守华). On physics beyond standard model. Front. Phys., 2013, 8(5): 516‒539 https://doi.org/10.1007/s11467-013-0382-0

References

[ait1]
S. H. Zhu, Recent progress in physics beyond the standard model, Front. Phys., 2013, 8(3): 241
CrossRef ADS Google scholar
[ait2]
G. Aad, . [ATLAS Collaboration], Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B, 2012, 716: 1, arXiv: 1207.7214
CrossRef ADS Google scholar
[ait3]
S. Chatrchyan, . [CMS Collaboration], Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B, 2012, 716: 30, 1207.7235
[ait4]
T. Li, X. Wan, Y.-K. Wang, and S.-H. Zhu, Constraints on the universal varying Yukawa couplings: from SM-like to fermiophobic, J. High Energy Phys., 2012, 1209: 086, arXiv: 1203.5083 [hep-ph]
[ait5]
S. H. Zhu, Complex vacuum and lightness of Higgs boson, arXiv: 1211.2370 [hep-ph], 2012
[ait6]
A. Sakharov, Quark-muonic currents and violation of CP invariance, Pisma Zh. Eksp. Teor. Fiz., 1967, 5: 32
[ait7]
A. Riotto and M. Trodden, Recent progress in baryogenesis, Ann. Rev. Nucl. Part. Sci., 1999, 49: 35, arXiv: hepph/ 9901362
[ait8]
T. Lee, A theory of spontaneous T violation, Phys. Rev. D, 1973, 8(4): 1226
CrossRef ADS Google scholar
[ait9]
T. Lee, CP nonconservation and spontaneous symmetry breaking, Phys. Rep., 1974, 9(2): 143
CrossRef ADS Google scholar
[ait10]
C. Huang and S. H. Zhu, Erratum: B→Xsτ+τ- in a CP spontaneously broken two Higgs doublet model, Phys. Rev. D, 2000, 61(1): 015011, arXiv: hep-ph/9905463
[ait11]
C. S. Huang, W. Liao, Q. S. Yan, and S. H. Zhu, Rare decay B→Xsι+ι- in a CP spontaneously broken two Higgs doublet model, Eur. Phys. J. C, 2002, 25(1): 103, arXiv: hep-ph/0110147
[ait12]
S. Weinberg, Gauge theory of CP nonconservation, Phys. Rev. Lett., 1976, 37(11): 657
CrossRef ADS Google scholar
[ait13]
G. C. Branco, Spontaneous CP nonconservation and natural flavor conservation: A minimal model, Phys. Rev. D, 1980, 22(11): 2901
CrossRef ADS Google scholar
[ait14]
K. Shizuya and S. Tye, Higgs-particle mixing and CP violation, Phys. Rev. D, 1981, 23(7): 1613
CrossRef ADS Google scholar
[ait15]
S. Zhu, Complete next-to-leading order QCD corrections to charged Higgs boson associated production with top quark at the CERN large hadron collider, Phys. Rev. D, 2003, 67(7): 075006, arXiv: hep-ph/0112109
CrossRef ADS Google scholar
[ait16]
Q.-H. Cao, X. Wan, X.-P. Wang and S.-H. Zhu, Searching for charged Higgs boson in polarized top quark, Phys. Rev. D, 2013, 87: 055022, arXiv:1301.6608 [hep-ph]
CrossRef ADS Google scholar
[ait17]
T. Aaltonen, . [CDF Collaboration], Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties, Phys. Rev. D, 2013, 87: 092002, arXiv: 1211.1003
CrossRef ADS Google scholar
[ait18]
V. M. Abazov, . [D0 Collaboration], Measurement of leptonic asymmetries and top quark polarization in tˉt production, arXiv: 1207.0364, 2012
[ait19]
T. Aaltonen, . [CDF Collaboration], Angular cross section for tˉt production, Conf. Note, 2013: 10974
[ait20]
G. Aad, . [ATLAS Collaboration], ATLAS measurement of the top quark pair production charge asymmetry in proton-proton collisions at s = 7 TeV using the ATLAS detector, ATLAS-CONF-2013-078
[ait21]
S. Chatrchyan, . [CMS Collaboration], Inclusive and differential measurements of the tˉt charge asymmetry in proton-proton collisions at s = 7 TeV, Phys. Lett. B, 2012, 717: 129, arXiv: 1207.0065 [hep-ex]
[ait22]
J. H. Kuhn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D, 1999, 59(5): 054017, arXiv: hep-ph/9807420
CrossRef ADS Google scholar
[ait23]
W. Bernreuther and Z. G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC, Nucl. Phys. B, 2010, 837(1-2): 90, arXiv: 1003.392
[ait24]
V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak, and L. L. Yang, The top-pair forward-backward asymmetry beyond NLO, Phys. Rev. D, 2011, 84(7): 074004, arXiv: 1106.6051
CrossRef ADS Google scholar
[ait25]
M. Czakon, P. Fiedler, A. Mitov, and J. Rojo, Further exploration of top pair hadroproduction at NNLO, arXiv: 1305.3892, 2013
[ait26]
S. Jung, H. Murayama, A. Pierce, and J. D.Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D, 2010, 81(1): 015004, arXiv: 0907.4112
CrossRef ADS Google scholar
[ait27]
K. Cheung, W. Y. Keung, and T. C. Yuan, Top quark forward-backward asymmetry, Phys. Lett. B, 2009, 682(3): 287, 0908.258
[ait28]
P. H. Frampton, J. Shu, and K. Wang, Axigluon as possible explanation for pp ¯→tt ¯ forward-backward asymmetry, Phys. Lett. B, 2010, 683(4-5): 294, arXiv: 0911.295
[ait29]
J. Shu, K. Wang, and G. Zhu, A revisit to top quark forwardbackward asymmetry, Phys. Rev. D, 2012, 85: 034008, arXiv: 1104.0083
CrossRef ADS Google scholar
[ait30]
B. Xiao, Y. Wang, and S. Zhu, Forward-backward asymmetry and differential cross section of top quark in flavor violating Z_ model at O(αs2αx), Phys. Rev. D, 2010, 82(3): 034026, arXiv: 1006.2510
CrossRef ADS Google scholar
[ait31]
S. Chatrchyan, . [CMS Collaboration], Search for samesign top-quark pair production ats =7 TeV and limits on flavour changing neutral currents in the top sector, J. High Energy Phys., 2011, 1108: 005, arXiv: 1106.2142
[ait32]
B. Xiao, Y. K. Wang, Z. Q. Zhou, and S. Zhu, Edge charge asymmetry in top pair production at the LHC, Phys. Rev. D2011, 83(5): 057503, arXiv: 1101.250
[ait33]
H. Wang, Y. Wang, B. Xiao, and S.-H. Zhu, New coloroctet axial vector boson revisited, Phys. Rev. D, 2011, 84(9): 094019, 1107.576
[ait34]
T. Li, X. Wan, Y. K. Wang, and S.-H. Zhu, Distinguishing the color octet axial-vector-like particle for top quark asymmetry via color flow method at the LHC, arXiv: 1306.3586, 2013
[ait35]
J. Gallicchio and M. D. Schwartz, Seeing in color: Jet superstructure, Phys. Rev. Lett., 2010, 105(2): 022001, arXiv: 1001.5027
CrossRef ADS Google scholar
[ait36]
F. Zwicky, Spectral displacement of extra galactic nebulae, Helv. Phys. Acta, 1933, 6: 110
[ait37]
H. W. Babcock, The rotation of the andromeda nebula, Lick. Observatory. Bulletin, 1939, 19: 41
[ait38]
V. C. Rubin, W. K. Jr. Ford, and N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R=4kpc/to UGC 2885/R=122kpc,Astrophys. J., 1980, 238: 471
[ait39]
V. C. Rubin, D. Burstein, W. K. Jr. Ford, and N. Thonnard, Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties, Astrophys. J., 1985, 289: 81
CrossRef ADS Google scholar
[ait40]
D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J., 2006, 648(2): L109, arXiv: astro-ph/0608407
CrossRef ADS Google scholar
[ait41]
G. Hinshaw, . [WMAP Collaboration], Nine-year wilkinson microwave anisotropy probe (WMAP) observations: Cosmological parameter results, arXiv: 1212.5226 [astroph. CO]
[ait42]
P. A. R. Ade, . [Planck Collaboration], Planck 2013 results. XVI. Cosmological parameters, arXiv: 1303.5076 [astro-ph.CO]
[ait43]
A. G. Riess, . [Supernova Search Team Collaboration], Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 1998, 116(3): 1009, arXiv: astro-ph/9805201
CrossRef ADS Google scholar
[ait44]
S. Perlmutter, . [Supernova Cosmology Project Collaboration], Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J., 1999, 517(2): 565, arXiv: astro-ph/9812133
CrossRef ADS Google scholar
[ait45]
B. A. Reid, W. J. Percival, D. J. Eisenstein, L. Verde, ., Cosmological constraints from the clustering of the sloan digital sky survey DR7 luminous red galaxies, Mon. Not. Roy. Astron. Soc., 2010, 404: 60, arXiv: 0907.1659 [astro-ph.CO]
[ait46]
B. A. Reid, L. Samushia, M. White, W. J. Percival, ., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering, arXiv: 1203.6641 [astro-ph.CO], 2012
[ait47]
M. Taoso, G. Bertone, and A. Masiero, Dark matter candidates: A ten-point test, J. cosmol. Astropart. Phys., 2008, 0803: 022, arXiv: 0711.4996 [astro-ph]
[ait48]
G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rep., 2005, 405(5-6): 279, arXiv: hep-ph/0404175
CrossRef ADS Google scholar
[ait49]
E. W. Kolb and M. S. Turner, The Early Universe, New York: Addison-Wesley, 1990
[ait50]
G. Jungman, M. Kamionkowski, and K. Griest, Supersymmetric dark matter, Phys. Rep., 1996, 267(5-6): 195, arXiv: hep-ph/9506380
CrossRef ADS Google scholar
[ait51]
D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Phys. Rep., 2007, 453(2-4): 29, arXiv: hep-ph/0701197
[ait52]
S. Dodelson and L. M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett., 1994, 72(1): 17, arXiv: hepph/ 9303287
[ait53]
X. D. Shi and G. M. Fuller, A New dark matter candidate: Nonthermal sterile neutrinos, Phys. Rev. Lett., 1999, 82(14): 2832, arXiv: astro-ph/9810076
CrossRef ADS Google scholar
[ait54]
S. J. Asztalos, L. J. Rosenberg, K. van Bibber, P. Sikivie, and K. Zioutas, Searches for astrophysical and cosmological axions, Ann. Rev. Nucl. Part. Sci., 2006, 56(1): 293
CrossRef ADS Google scholar
[ait55]
M. W. Goodman and E. Witten, Detectability of certain dark matter candidates, Phys. Rev. D, 1985, 31(12): 3059
CrossRef ADS Google scholar
[ait56]
R. Bernabei, . [DAMA Collaboration], First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C, 2008, 56: 333, arXiv: 0804.2741 [astro-ph]
CrossRef ADS Google scholar
[ait57]
C. E. Aalseth, . [CoGeNT Collaboration], Results from a search for light-mass dark matter with a P-type point contact germanium detector, Phys. Rev. Lett., 2011, 106: 131301, arXiv: 1002.4703 [astro-ph.CO]
CrossRef ADS Google scholar
[ait58]
G. Angloher, M. Bauer, I. Bavykina, A. Bento, , Results from 730 kg days of the CRESST-II dark matter search, Eur Phys. J. C, 2012, 72: 1971, arXiv: 1109.0702 [astro-ph.CO]
[ait59]
C. Savage, G. Gelmini, P. Gondolo, and K. Freese, Compatibility of DAMA/LIBRA dark matter detection with other searches, J. Cosmol. Astropart. Phys., 2009, 0904: 010, arXiv: 0808.3607 [astro-ph]
[ait60]
S. Chang, A. Pierce, and N. Weiner, Using the energy spectrum at DAMA/LIBRA to probe light dark matter, Phys. Rev. D, 2009, 79: 115011, arXiv: 0808.0196 [hep-ph]
CrossRef ADS Google scholar
[ait61]
J. Angle, . [XENON10 Collaboration], A search for light dark matter in XENON10 data, Phys. Rev. Lett., 2011,107: 051301, arXiv: 1104.3088 [astro-ph.CO]
CrossRef ADS Google scholar
[ait62]
E. Aprile, . [XENON100 Collaboration], Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett., 2012, 109: 181301, arXiv: 1207.5988 [astro-ph.CO]
CrossRef ADS Google scholar
[ait63]
D. Hooper, J. I. Collar, J. Hall, D. McKinsey, and C. Kelso, A consistent dark matter interpretation for CoGeNT and DAMA/LIBRA, Phys. Rev. D, 2010, 82: 123509, arXiv: 1007.1005 [hep-ph]
CrossRef ADS Google scholar
[ait64]
P. J. Fox, J. Liu, and N. Weiner, Integrating out astrophysical uncertainties, Phys. Rev. D, 2011, 83: 103514, arXiv: 1011.1915 [hep-ph]
CrossRef ADS Google scholar
[ait65]
T. Schwetz, Direct detection data and possible hints for lowmass WIMPs, PoS IDM, 2011, 2010: 070, arXiv: 1011.5432 [hep-ph]
[ait66]
D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D, 2001, 64(4): 043502, arXiv: hep-ph/0101138
CrossRef ADS Google scholar
[ait67]
S. Chang, G. D. Kribs, D. Tucker-Smith, and N. Weiner, Inelastic dark matter in light of DAMA/LIBRA, Phys. Rev. D, 2009, 79: 043513, arXiv: 0807.2250 [hep-ph]
CrossRef ADS Google scholar
[ait68]
J. L. Feng, J. Kumar, D. Marfatia, and D. Sanford, Isospinviolating dark matter, Phys. Lett. B, 2011, 703: 124, arXiv: 1102.4331 [hep-ph]
CrossRef ADS Google scholar
[ait69]
Z. Ahmed, . [CDMS-II Collaboration], Dark matter search results from the CDMS II experiment, Science, 2010, 327: 1619, arXiv: 0912.3592 [astro-ph.CO]
CrossRef ADS Google scholar
[ait70]
Z. Ahmed, . [CDMS-II Collaboration], Results from a low-energy analysis of the CDMS II germanium data, Phys Rev. Lett., 2011, 106: 131302, arXiv: 1011.2482 [astroph. CO]
CrossRef ADS Google scholar
[ait71]
E. Armengaud, . [EDELWEISS Collaboration], Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes, Phys. Lett. B, 2011, 702: 329, arXiv: 1103.4070 [astro-ph.CO]
CrossRef ADS Google scholar
[ait72]
M. Felizardo, T. A. Girard, T. Morlat, A. C. Fernandes, , Final analysis and results of the phase II SIMPLE dark matter search, Phys. Rev. Lett., 2012, 108: 201302, arXiv: 1106.3014 [astro-ph.CO]
CrossRef ADS Google scholar
[ait73]
D. Y. Akimov, H. M. Araujo, E. J. Barnes, V. A. Belov, , WIMP-nucleon cross-section results from the second science run of ZEPLIN-III, Phys. Lett. B, 2012, 709: 14, arXiv: 1110.4769 [astro-ph.CO]
CrossRef ADS Google scholar
[ait74]
O. Buchmueller, , Higgs and supersymmetry, Eur. Phys. J. C, 2012, 72: 2020, arXiv: 1112.3564 [hep-ph]
CrossRef ADS Google scholar
[ait75]
C. Strege, , Updated global fits of the cMSSM including the latest LHC SUSY and Higgs searches and XENON100 data, J. Cosmol. Astropart. Phys., 2012, 1203: 030, arXiv: 1112.4192 [hep-ph]
[ait76]
A. Fowlie, , The CMSSM favoring new territories: The impact of new LHC limits and a 125 GeV Higgs, Phys. Rev. D, 2012, 86: 075010, arXiv:1206.0264 [hep-ph]
CrossRef ADS Google scholar
[ait77]
E. Aprile [XENON1T Collaboration], The XENON1T dark matter search experiment, arXiv: 1206.6288 [astro-ph.IM], 2012
[ait78]
E. Aprile, . [XENON100 Collaboration], Limits on spindependent WIMP-nucleon cross sections from 225 live days of XENON100 data, arXiv: 1301.6620 [astroph.CO], 2013
[ait79]
J. Angle, E. Aprile, F. Arneodo, L. Baudis, , Limits on spin-dependent WIMP-nucleon crosssections from the XENON10 experiment, Phys. Rev. Lett., 2008, 101: 091301, arXiv: 0805.2939 [astro-ph]
CrossRef ADS Google scholar
[ait80]
Z. Ahmed, . [CDMS Collaboration], Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan underground laboratory, Phys. Rev. Lett., 2009, 102: 011301, arXiv: 0802.3530 [astro-ph]
CrossRef ADS Google scholar
[ait81]
S. Archambault, . [PICASSO Collaboration], Constraints on low-mass WIMP interactions on 19F from PICASSO, Phys. Lett. B, 2012, 711: 153, arXiv: 1202.1240 [hep-ex]
CrossRef ADS Google scholar
[ait82]
E. Behnke, . [COUPP Collaboration], First dark matter search results from a 4-kg CF3I bubble chamber operated in a deep underground site, Phys. Rev. D, 2012, 86: 052001, arXiv: 1204.3094 [astro-ph.CO]
CrossRef ADS Google scholar
[ait83]
S. C. Kim, H. Bhang, J. H. Choi, W. G. Kang, , New limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) crystal detectors, Phys. Rev. Lett., 2012, 108: 181301, arXiv: 1204.2646 [astro-ph.CO]
CrossRef ADS Google scholar
[ait84]
M. G. Aartsen, . [IceCube Collaboration], Search for dark matter annihilations in the Sun with the 79-string Ice- Cube detector, Phys. Rev. Lett., 2013, 110: 131302, arXiv: 1212.4097 [astro-ph.HE]
CrossRef ADS Google scholar
[ait85]
E. A. Baltz and J. Edsjo, Positron propagation and fluxes from neutralino annihilation in the halo, Phys. Rev. D, 1998, 59(2): 023511, arXiv: astro-ph/9808243
CrossRef ADS Google scholar
[ait86]
I. V. Moskalenko and A. W. Strong, Production and propagation of cosmic ray positrons and electrons, Astrophys. J., 1998, 493(2): 694, arXiv: astro-ph/9710124
CrossRef ADS Google scholar
[ait87]
I. V. Moskalenko and A. W. Strong, Positrons from particle dark-matter annihilation in the galactic halo: propagation green’s functions, Phys. Rev. D, 1999, 60(6): 063003, arXiv: astro-ph/9905283
CrossRef ADS Google scholar
[ait88]
A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Cosmicray propagation and interactions in the Galaxy, Ann. Rev. Nucl. Part. Sci., 2007, 57(1): 285, arXiv: astro-ph/0701517
[ait89]
S. W. Barwick, . [HEAT Collaboration], Measurements of the cosmic ray positron fraction from 1 GeV to 50 GeV, Astrophys. J., 1997, 482: L191, arXiv: astro-ph/9703192
CrossRef ADS Google scholar
[ait90]
S. Coutu, , Positron measurements with the HEAT-pinstrument, in: International Cosmic Ray Conference (2001), Vol. 5 of International Cosmic Ray Conference, p. 1687
[ait91]
M. Aguilar, . [AMS-01 Collaboration], Cosmic-ray positron fraction measurement from 1 GeV to 30 GeV with AMS-01, Phys. Lett. B, 2007, 646: 145, arXiv: astroph/ 0703154 [astro-ph]
[ait92]
O. Adriani, . [PAMELA Collaboration], An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature, 2009, 458: 607, arXiv: 0810.4995 [astro-ph]
CrossRef ADS Google scholar
[ait93]
M. Aguilar, . [AMS Collaboration], First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV, Phys. Rev. Lett., 2013, 110(14): 141102
CrossRef ADS Google scholar
[ait94]
J. Chang, J. H. Adams, H. S. Ahn, G. L. Bashindzhagyan, M. Christl, O. Ganel, T. G. Guzik, J. Isbert, K. C. Kim, E. N. Kuznetsov, M. I. Panasyuk, A. D. Panov, W. K. H. Schmidt, E. S. Seo, N. V. Sokolskaya, J. W. Watts, J. P. Wefel, J. Wu, and V. I. Zatsepin, An excess of cosmic ray electrons at energies of 300-800 GeV, Nature, 2008, 456(7220): 362
CrossRef ADS Google scholar
[ait95]
M. Ackermann, . [Fermi LAT Collaboration], Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV, Phys. Rev. D, 2010, 82: 092004, 1008.3999 [astro-ph.HE]
[ait96]
F. Aharonian, . [HESS Collaboration], The energy spectrum of cosmic-ray electrons at TeV energies, Phys. Rev. Lett., 2008, 101: 261104, arXiv: 0811.3894 [astro-ph]
CrossRef ADS Google scholar
[ait97]
F. Aharonian, . [HESS Collaboration], Probing the ATIC peak in the cosmic-ray electron spectrum with HESS, Astron. Astrophys., 2009, 508: 561, arXiv: 0905.0105 [astroph. HE]
CrossRef ADS Google scholar
[ait98]
M. Ackermann, . [Fermi LAT Collaboration], Measurement of separate cosmic-ray electron and positron spectra with the Fermi large area telescope, Phys. Rev. Lett., 2012, 108: 011103, arXiv: 1109.0521 [astro-ph.HE]
CrossRef ADS Google scholar
[ait99]
O. Adriani, . [PAMELA Collaboration], The cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV, Phys. Rev. Lett., 2011, 106: 201101, arXiv: 1103.2880 [astro-ph.HE]
CrossRef ADS Google scholar
[ait100]
O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, , A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett., 2009, 102: 051101, arXiv: 0810.4994 [astro-ph]
[ait101]
M. Cirelli, M. Kadastik, M. Raidal and A. Strumia, Modelindependent implications of the e+, e-, anti-proton cosmic ray spectra on properties of Dark Matter, Nucl. Phys. B, 2009, 813: 1, arXiv: 0809.2409 [hep-ph]
CrossRef ADS Google scholar
[ait102]
T. Delahaye, R. Lineros, F. Donato, N. Fornengo and P. Salati, Positrons from dark matter annihilation in the galactic halo: Theoretical uncertainties, Phys. Rev. D, 2008, 77: 063527, arXiv: 0712.2312 [astro-ph]
CrossRef ADS Google scholar
[ait103]
T. Delahaye, F. Donato, N. Fornengo, J. Lavalle, R. Lineros, P. Salati and R. Taillet, Galactic secondary positron flux at the Earth, Astron. Astrophys., 2009, 501: 821, arXiv: 0809.5268 [astro-ph]
CrossRef ADS Google scholar
[ait104]
J. Liu, Q. Yuan, X. J. Bi, H. Li and X. Zhang, A Markov chain Monte Carlo study on dark matter property related to the cosmic e± excesses, Phys. Rev. D, 2010, 81: 023516, arXiv: 0906.3858 [astro-ph.CO]
CrossRef ADS Google scholar
[ait105]
J. Liu, Q. Yuan, X. J. Bi, H. Li, and X. Zhang, Cos-RayMC: A global fitting method in studying the properties of the new sources of cosmic e± excesses, Phys. Rev. D, 2012, 85: 043507, arXiv: 1106.3882 [astro-ph.CO]
CrossRef ADS Google scholar
[ait106]
Q. Yuan, X. J. Bi, G. M. Chen, Y.Q. Guo, S. J. Lin, and X. Zhang, Implications of the AMS-02 positron fraction in cosmic rays, arXiv: 1304.1482 [astro-ph.HE], 2013
[ait107]
D. Hooper, A. Stebbins, and K. M. Zurek, Excesses in cosmic ray positron and electron spectra from a nearby clump of neutralino dark matter, Phys. Rev. D, 2009, 79: 103513, arXiv: 0812.3202 [hep-ph]
CrossRef ADS Google scholar
[ait108]
X.-J. Bi, R. Brandenberger, P. Gondolo, T.-J. Li, Q. Yuan, and X.-M. Zhang, Non-thermal production of WIMPs, cosmic e± excesses and gamma-rays from the galactic center, Phys. Rev. D, 2009, 80: 103502, arXiv: 0905.1253 [hep-ph]
CrossRef ADS Google scholar
[ait109]
D. Feldman, Z. Liu, and P. Nath, PAMELA positron excess as a signal from the hidden sector, Phys. Rev. D, 2009, 79: 063509, arXiv: 0810.5762 [hep-ph]
CrossRef ADS Google scholar
[ait110]
M. Ibe, H. Murayama, and T. T. Yanagida, Breit-Wigner enhancement of dark matter annihilation, Phys. Rev. D, 2009, 79: 095009: arXiv: 0812.0072 [hep-ph]
CrossRef ADS Google scholar
[ait111]
W.-L. Guo and Y.-L. Wu, Enhancement of dark matter annihilation via Breit-Wigner resonance, Phys. Rev. D, 2009, 79: 055012, arXiv: 0901.1450 [hep-ph]
CrossRef ADS Google scholar
[ait112]
M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B, 2009, 671: 391, arXiv: 0810.1502 [hep-ph]
CrossRef ADS Google scholar
[ait113]
N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, A theory of dark matter, Phys. Rev. D, 2009, 79: 015014, arXiv: 0810.0713 [hep-ph]
CrossRef ADS Google scholar
[ait114]
P.-F. Yin, Q. Yuan, J. Liu, J. Zhang, X.-J. Bi, S.-H. Zhu, and X.-M. Zhang, PAMELA data and leptonically decaying dark matter, Phys. Rev. D, 2009, 79: 023512, arXiv: 0811.0176 [hep-ph]
CrossRef ADS Google scholar
[ait115]
K. Ishiwata, S. Matsumoto, and T. Moroi, Cosmic-ray positron from superparticle dark matter and the PAMELA anomaly, Phys. Lett. B, 2009, 675: 446, arXiv: 0811.0250 [hep-ph]
CrossRef ADS Google scholar
[ait116]
A. Ibarra and D. Tran, Decaying dark matter and the PAMELA anomaly, J. Cosmol. Astropart. Phys., 2009, 0902: 021, arXiv: 0811.1555 [hep-ph]
[ait117]
C.-R. Chen, M. M. Nojiri, F. Takahashi, and T. T. Yanagida, Decaying hidden gauge boson and the PAMELA and ATIC/PPB-BETS anomalies, Prog. Theor. Phys., 2009, 122: 553, arXiv: 0811.3357 [astro-ph]
CrossRef ADS Google scholar
[ait118]
A. Arvanitaki, S. Dimopoulos, S. Dubovsky, P. W. Graham, R. Harnik, and S. Rajendran, Astrophysical probes of unification, Phys. Rev. D, 2009, 79: 105022, arXiv: 0812.2075 [hep-ph]
CrossRef ADS Google scholar
[ait119]
D. Hooper, P. Blasi, and P. D. Serpico, Pulsars as the sources of high energy cosmic ray positrons, J. Cosmol. Astropart. Phys., 2009, 0901: 025, arXiv: 0810.1527 [astro-ph]
[ait120]
H. Yuksel, M. D. Kistler, and T. Stanev, TeV gamma rays from geminga and the origin of the GeV positron excess, Phys. Rev. Lett., 2009, 103: 051101, arXiv: 0810.2784 [astroph]
CrossRef ADS Google scholar
[ait121]
S. Profumo, Dissecting cosmic-ray electron-positron data with Occam’s Razor: The role of known Pulsars, Central Eur. J. Phys., 2011, 10: 1, arXiv: 0812.4457 [astro-ph]
CrossRef ADS Google scholar
[ait122]
D. Malyshev, I. Cholis, and J. Gelfand, Pulsars versus dark matter interpretation of ATIC/PAMELA, Phys. Rev. D, 2009, 80: 063005, arXiv: 0903.1310 [astro-ph.HE]
CrossRef ADS Google scholar
[ait123]
T. Linden and S. Profumo, Probing the pulsar origin of the anomalous positron fraction with AMS-02 and atmospheric cherenkov telescopes, arXiv: 1304.1791 [astro-ph.HE], 2013
[ait124]
I. Cholis and D. Hooper, Dark matter and pulsar origins of the rising cosmic ray positron fraction in light of new data from AMS, arXiv: 1304.1840 [astro-ph.HE], 2013
[ait125]
P. F. Yin, Z. H. Yu, Q. Yuan, and X. J. Bi, Pulsar interpretation for the AMS-02 result, arXiv: 1304.4128 [astro-ph.HE], 2013
[ait126]
L. Bergstrom, P. Ullio, and J. H. Buckley, Observability of gamma-rays from dark matter neutralino annihilations in the Milky Way halo, Astropart. Phys., 1998, 9(2): 137, arXiv: astro-ph/9712318
CrossRef ADS Google scholar
[ait127]
J. F. Navarro, C. S. Frenk, and S. D. M. White, The Structure of cold dark matter halos, Astrophys. J., 1996, 462: 563, arXiv: astro-ph/9508025
CrossRef ADS Google scholar
[ait128]
M. Ackermann, . [Fermi-LAT Collaboration], Constraining dark matter models from a combined analysis of milky way satellites with the Fermi large area telescope, Phys. Rev. Lett., 2011, 107: 241302, arXiv: 1108.3546 [astro-ph.HE]
CrossRef ADS Google scholar
[ait129]
A. Geringer-Sameth and S. M. Koushiappas, Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi, Phys. Rev. Lett., 2011, 107: 241303, arXiv: 1108.2914 [astro-ph.CO]
CrossRef ADS Google scholar
[ait130]
I. Cholis and P. Salucci, Extracting limits on Dark Matter annihilation from gamma-ray observations towards dwarf spheroidal galaxies, Phys. Rev. D, 2012, 86: 023528, arXiv: 1203.2954 [astro-ph.HE]
CrossRef ADS Google scholar
[ait131]
M. N. Mazziotta, F. Loparco, F. de Palma, and N. Giglietto, A model independent analysis of the Fermi Large Area Telescope gamma-ray data from the Milky Way dwarf galaxies and halo to constrain dark matter scenarios, arXiv: 1203.6731 [astro-ph.IM], 2012
[ait132]
Y.-L. S. Tsai, Q. Yuan, and X. Huang, A generic method to constrain the dark matter model parameters from Fermi observations of dwarf spheroids, J. Cosmol. Astropart. Phys., 2013, 1303: 018, arXiv: 1212.3990 [astro-ph.HE]
[ait133]
M. Ackermann, . [Fermi-LAT Collaboration], GeV gamma-ray flux upper limits from clusters of galaxies, arXiv: 1006.0748 [astro-ph.HE], 2010
[ait134]
Q. Yuan, P.-F. Yin, X.-J. Bi, X.-M. Zhang, and S.-H. Zhu, Gamma rays and neutrinos from dark matter annihilation in galaxy clusters, Phys. Rev. D, 2010, 82: 023506, arXiv: 1002.0197 [astro-ph.HE]
CrossRef ADS Google scholar
[ait135]
L. Dugger, T. E. Jeltema, and S. Profumo, Constraints on decaying dark matter from fermi observations of nearby galaxies and clusters, J. Cosmol. Astropart. Phys., 2010, 1012: 015, arXiv: 1009.5988 [astro-ph.HE]
[ait136]
S. Ando and D. Nagai, Fermi-LAT constraints on dark matter annihilation cross section from observations of the Fornax cluster, J. Cosmol. Astropart. Phys., 2012, 1207: 017, arXiv: 1201.0753 [astro-ph.HE]
[ait137]
J. Ke, M. Luo, L. Wang, and G. Zhu, Gamma-rays from nearby clusters: Constraints on selected decaying dark matter models, Phys. Lett. B, 2011, 698: 44, arXiv: 1101.5878 [hep-ph]
CrossRef ADS Google scholar
[ait138]
X. Huang, G. Vertongen, and C. Weniger, Probing dark matter decay and annihilation with Fermi LAT observations of nearby galaxy clusters, J. Cosmol. Astropart. Phys., 2012, 1201: 042, arXiv: 1110.1529 [hep-ph]
[ait139]
M. Ackermann, . [LAT Collaboration], Constraints on the galactic Halo dark matter from Fermi-LAT diffuse measurements, Astrophys. J., 2012, 761: 91, arXiv: 1205.6474 [astro-ph.CO]
CrossRef ADS Google scholar
[ait140]
J. Zhang, Q. Yuan, and X.-J. Bi, Galactic diffuse gamma rays-recalculation based on the new measurements of cosmic electron spectrum, Astrophys. J., 2010, 720: 9, arXiv: 0908.1236 [astro-ph.HE]
CrossRef ADS Google scholar
[ait141]
M. Papucci and A. Strumia, Robust implications on Dark Matter from the first FERMI sky gamma map, J. Cosmol. Astropart. Phys., 2010, 1003: 014, arXiv: 0912.0742 [hepph]
[ait142]
L. Zhang, C. Weniger, L. Maccione, J. Redondo, and G. Sigl, Constraining decaying dark matter with Fermi LAT gammarays, J. Cosmol. Astropart. Phys., 2010, 1006: 027, arXiv: 0912.4504[astro-ph.HE]
[ait143]
P. D. Serpico and D. Hooper, Gamma-rays from dark matter annihilation in the central region of the galaxy, New J. Phys., 2009, 11: 105010, arXiv: 0902.2539 [hep-ph]
CrossRef ADS Google scholar
[ait144]
J. Ellis, K. A. Olive, and V. C. Spanos, Galactic-centre gamma rays in CMSSM dark matter scenarios, J. Cosmol. Astropart. Phys., 2011, 1110: 024, arXiv: 1106.0768 [hep-ph]
[ait145]
T. Cohen, M. Lisanti, T. R. Slatyer, and J. G. Wacker, Illuminating the 130 GeV gamma line with continuum photons, J. High Energy Phys., 2012, 1210: 134, arXiv: 1207.0800 [hep-ph]
CrossRef ADS Google scholar
[ait146]
I. Cholis, M. Tavakoli, and P. Ullio, Searching for the continuum spectrum photons correlated to the 130 GeV gamma-ray line, Phys. Rev. D, 2012, 86(8): 083525, arXiv: 1207.1468 [hep-ph]
CrossRef ADS Google scholar
[ait147]
X.-Y. Huang, Q. Yuan, P.-F. Yin, X.-J. Bi, and X.-L. Chen, Constraints on the dark matter annihilation scenario of Fermi 130 GeV γ-ray line emission by continuous gammarays, MilkyWay halo, galaxy clusters and dwarf galaxies observations, J. Cosmol. Astropart. Phys., 2012, 1211: 048, arXiv: 1208.0267 [astro-ph.HE]
[ait148]
D. Hooper and L. Goodenough, Dark matter annihilation in the galactic center as seen by the Fermi gamma ray space telescope, Phys. Lett. B, 2011, 697: 412, arXiv: 1010.2752 [hep-ph]
CrossRef ADS Google scholar
[ait149]
D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D, 2011, 84: 123005, arXiv: 1110.0006 [astro-ph.HE]
CrossRef ADS Google scholar
[ait150]
L. Bergstrom and H. Snellman, Observable monochromatic photons from cosmic photino annihilation, Phys. Rev. D, 1988, 37(12): 3737
CrossRef ADS Google scholar
[ait151]
S. Rudaz, On the annihilation of heavy neutral fermion pairs into monochromatic gamma-rays and its astrophysical implications, Phys. Rev. D, 1989, 39(12): 3549
CrossRef ADS Google scholar
[ait152]
L. Bergstrom and P. Ullio, Full one loop calculation of neutralino annihilation into two photons, Nucl. Phys. B, 1997, 504(1-2): 27, arXiv: hep-ph/9706232
[ait153]
P. Ullio and L. Bergstrom, Neutralino annihilation into a photon and a Z boson, Phys. Rev. D, 1998, 57(3): 1962, arXiv: hep-ph/9707333
CrossRef ADS Google scholar
[ait154]
T. Bringmann, X. Huang, A. Ibarra, S. Vogl, and C. Weniger, Fermi LAT search for internal Bremsstrahlung signatures from dark matter annihilation, J. Cosmol. Astropart. Phys., 2012, 1207: 054, arXiv: 1203.1312 [hep-ph]
[ait155]
C. Weniger, A tentative gamma-ray line from dark matter annihilation at the Fermi large area telescope, J. Cosmol. Astropart. Phys., 2012, 1208: 007, arXiv: 1204.2797 [hep-ph]
[ait156]
E. Tempel, A. Hektor, and M. Raidal, Fermi 130 GeV gamma-ray excess and dark matter annihilation in subhaloes and in the Galactic centre, J. Cosmol. Astropart. Phys., 2012, 1209: 032 [Addendum-ibid., 2012, 1211: A01], arXiv: 1205.1045 [hep-ph]
[ait157]
A. Boyarsky, D. Malyshev, and O. Ruchayskiy, Spectral and spatial variations of the diffuse gamma-ray background in the vicinity of the Galactic plane and possible nature of the feature at 130 GeV, arXiv: 1205.4700 [astro-ph.HE], 2012
[ait158]
M. Su and D. P. Finkbeiner, Strong evidence for gammaray line emission from the inner galaxy, arXiv: 1206.1616 [astro-ph.HE], 2012
[ait159]
Fermi-LAT Collaboration, Search for gamma-ray spectral lines with the Fermi large area telescope and dark matter implications, arXiv: 1305.5597 [astro-ph.HE], 2013
[ait160]
J. Faulkner and R. L. Gilliland, Weakly interacting, massive particles and the solar neutrino flux, Astrophys. J., 1985, 299: 994
CrossRef ADS Google scholar
[ait161]
W. H. Press and D. N. Spergel, Capture by the sun of a galactic population of weakly interacting massive particles, Astrophys. J., 1985, 296: 679
CrossRef ADS Google scholar
[ait162]
J. Silk, K. A. Olive, and M. Srednicki, The Photino, the Sun and high-energy neutrinos, Phys. Rev. Lett., 1985, 55(2): 257
CrossRef ADS Google scholar
[ait163]
A. Gould, Resonant enhancements in WIMP capture by the Earth, Astrophys. J., 1987, 321: 571
CrossRef ADS Google scholar
[ait164]
A. Gould, Cosmological density of WIMPs from solar and terrestrial annihilations, Astrophys. J., 1992, 388: 338
CrossRef ADS Google scholar
[ait165]
M. Cirelli, N. Fornengo, T. Montaruli, I. A. Sokalski, A. Strumia, and F. Vissani, Spectra of neutrinos from dark matter annihilations, Nucl. Phys. B, 2005, 727(1-2): 99 [Erratum-ibid. B, 2008, 790: 338], arXiv: hep-ph/0506298)
[ait166]
M. Blennow, J. Edsjo, and T. Ohlsson, Neutrinos from WIMP annihilations using a full three-flavor Monte Carlo, J. Cosmol. Astropart. Phys., 2008, 0801: 021, arXiv: 0709.3898 [hep-ph]
[ait167]
V. Barger, W. -Y. Keung, G. Shaughnessy, and A. Tregre, High energy neutrinos from neutralino annihilations in the Sun, Phys. Rev. D, 2007, 76: 095008, arXiv: 0708.1325 [hepph]
CrossRef ADS Google scholar
[ait168]
M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D, 2007, 75(4): 043006, arXiv: astro-ph/0611418
CrossRef ADS Google scholar
[ait169]
H. Yuksel, S. Horiuchi, J. F. Beacom, and S. ’i. Ando, Neutrino constraints on the dark matter total annihilation cross section, Phys. Rev. D, 2007, 76: 123506, arXiv: 0707.0196 [astro-ph]
CrossRef ADS Google scholar
[ait170]
J. Liu, P.-F. Yin, and S.-H. Zhu, Prospects for detecting neutrino signals from annihilating/decaying dark matter to account for the PAMELA and ATIC results, Phys. Rev. D, 2009, 79: 063522, arXiv: 0812.0964 [astro-ph]
CrossRef ADS Google scholar
[ait171]
A. E. Erkoca, G. Gelmini, M. H. Reno, and I. Sarcevic, Muon fluxes and showers from dark matter annihilation in the galactic center, Phys. Rev. D, 2010, 81: 096007, arXiv: 1002.2220 [hep-ph]
CrossRef ADS Google scholar
[ait172]
L. Covi, M. Grefe, A. Ibarra, and D. Tran, Neutrino signals from dark matter decay, J. Cosmol. Astropart. Phys., 2010, 1004: 017, arXiv: 0912.3521 [hep-ph]
[ait173]
A. E. Erkoca, G. Gelmini, M. H. Reno, and I. Sarcevic, Muon fluxes and showers from dark matter annihilation in the galactic center, Phys. Rev. D, 2010, 81: 096007, arXiv: 1002.2220 [hep-ph]
CrossRef ADS Google scholar
[ait174]
R. Abbasi, . [IceCube Collaboration], The design and performance of IceCube DeepCore, Astropart. Phys., 2012, 35: 615, arXiv: 1109.6096 [astro-ph.IM]
CrossRef ADS Google scholar
[ait175]
R. Abbasi, . [IceCube Collaboration], Search for neutrinos from annihilating dark matter in the direction of the galactic center with the 40-string IceCube neutrino observatory, arXiv: 1210.3557 [hep-ex], 2012
[ait176]
H. -C. Cheng, J. F. Gunion, Z. Han, G. Marandella, and B. McElrath, Mass determination in SUSY-like events with missing energy, J. High Energy Phys., 2007, 0712: 076, arXiv: 0707.0030 [hep-ph]
[ait177]
M. Burns, K. Kong, K. T. Matchev, and M. Park, Using subsystem MT2 for complete mass determinations in decay chains with missing energy at hadron colliders, J. High Energy Phys., 2009, 0903: 143, arXiv: 0810.5576 [hep-ph]
CrossRef ADS Google scholar
[ait178]
A. J. Barr and C. G. Lester, A review of the mass measurement techniques proposed for the large hadron collider, J. Phys. G, 2010, 37: 123001, arXiv: 1004.2732 [hep-ph]
CrossRef ADS Google scholar
[ait179]
T. Han, I.-W. Kim, and J. Song, Kinematic cusps with two missing particles I: Antler decay topology, Phys. Rev. D, 2013, 87: 035003, 2012, arXiv: 1206.5633 [hep-ph]
[ait180]
K. A. Olive, Colliders and Cosmology, In: Karlsruhe 2007, SUSY2007, 158-173, arXiv: 0709.3303 [hep-ph], 2007
[ait181]
H. Baer and X. Tata, Dark matter and the LHC, arXiv: 0805.1905 [hep-ph], 2008
[ait182]
H. Baer, X. Tata, and J. Woodside, Multi-lepton signals from supersymmetry at hadron super colliders, Phys. Rev. D, 1992, 45(1): 142
CrossRef ADS Google scholar
[ait183]
D. Feldman, Z. Liu, and P. Nath, Sparticles at the LHC, J. High Energy Phys., 2008, 0804: 054, arXiv: 0802.4085 [hep-ph]
[ait184]
C. Rogan, Kinematical variables towards new dynamics at the LHC, arXiv: 1006.2727 [hep-ph], 2010
[ait185]
CMS Collaboration, Search for supersymmetry with the razor variables at CMS, CMS-PAS-SUS-12-005
[ait186]
L. Randall and D. Tucker-Smith, Dijet searches for supersymmetry at the LHC, Phys. Rev. Lett., 2008, 101: 221803, arXiv: 0806.1049 [hep-ph]
CrossRef ADS Google scholar
[ait187]
S. Chatrchyan, . [CMS Collaboration], Search for supersymmetry in final states with missing transverse energy and 0, 1, 2, or at least 3 b-quark jets in 7 TeV pp collisions using the variable alphaT, J. High Energy Phys., 2013, 1301: 077, arXiv: 1210.8115 [hep-ex]
[ait188]
C. G. Lester and D. J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B, 1999, 463: 99, arXiv: hep-ph/9906349
CrossRef ADS Google scholar
[ait189]
A. Barr, C. Lester, and P. Stephens, mT2: The Truth behind the glamour, J. Phys. G, 2003, 29: 2343, arXiv: hepph/0304226
[ait190]
S. Chatrchyan, . [CMS Collaboration], Search for supersymmetry in hadronic final states using MT2 in PP collisions at s = 7 TeV, J. High Energy Phys., 2012, 1210: 018, arXiv: 1207.1798 [hep-ex]
[ait191]
G. Aad, . [ATLAS Collaboration], Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, J. High Energy Phys., 2013, 1304: 075, arXiv: 1210.4491 [hep-ex]
[ait192]
J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H.-B. Yu, Constraints on dark matter from colliders, Phys. Rev. D, 2010, 82: 116010, arXiv: 1008.1783 [hep-ph]
CrossRef ADS Google scholar
[ait193]
T. Aaltonen, . [CDF Collaboration], A search for dark matter in events with one jet and missing transverse energy in PˉP collisions at s = 1.96 TeV, Phys. Rev. Lett., 2012, 108: 211804, arXiv: 1203.0742 [hep-ex]
[ait194]
S. Chatrchyan, . [CMS Collaboration], Search for dark matter and large extra dimensions in monojet events in pp collisions at s = 7 TeV, J. High Energy Phys., 2012, 1209: 094, arXiv: 1206.5663 [hep-ex]
[ait195]
Y. Bai, P. J. Fox, and R. Harnik, The tevatron at the frontier of dark matter direct detection, J. High Energy Phys., 2010, 1012: 048, arXiv: 1005.3797 [hep-ph]
[ait196]
P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D, 2012, 85: 056011, arXiv: 1109.4398 [hep-ph]
CrossRef ADS Google scholar
[ait197]
Q. -H. Cao, C. -R. Chen, C. S. Li, and H. Zhang, Effective dark matter model: Relic density, CDMS II, Fermi LAT and LHC, J. High Energy Phys., 2011, 1108: 018, arXiv: 0912.4511 [hep-ph]
[ait198]
M. Beltran, D. Hooper, E. W. Kolb, and Z. C. Krusberg, Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics, Phys. Rev. D, 2009, 80: 043509, arXiv: 0808.3384 [hep-ph]
CrossRef ADS Google scholar
[ait199]
J.-M. Zheng, Z.-H. Yu, J.-W. Shao, X.-J. Bi, Z. Li, and H.-H. Zhang, Constraining the interaction strength between dark matter and visible matter: I. fermionic dark matter, Nucl. Phys. B, 2012, 854: 350, arXiv: 1012.2022[hep-ph]
CrossRef ADS Google scholar
[ait200]
Z.-H. Yu, J.-M. Zheng, X.-J. Bi, Z. Li, D.-X. Yao, and H.- H. Zhang, Constraining the interaction strength between dark matter and visible matter: II. scalar, vector and spin-3/2 dark matter, Nucl. Phys. B, 2012, 860: 115, arXiv: 1112.6052 [hep-ph]
CrossRef ADS Google scholar
[ait201]
C. E. Rolfs and W. S. Rodney, Cauldrons in the Cosmos: Nuclear Astrophysics, Chicago: University of Chicago Press, 1988
[ait202]
Planck Collaboration, Planck 2013 results. I. Overview of products and scientific results, Astron. Astrophys., (submitted), arXiv:1303.5062
[ait203]
R. V. Wagoner, W. A. Fowler, and F. Hoyle, On the synthesis of elements at very high temperatures, Astrophys. J., 1967, 148: 3
CrossRef ADS Google scholar
[ait204]
A. Coc, S. Goriely, Y. Xu, M. Saimpert, and E. Vangioni, Standard big bang nucleosynthesis up to CNO with an improved extended nuclear network, Astrophys. J., 2012, 744(2): 158
CrossRef ADS Google scholar
[ait205]
F. Hammache, M. Heil, S. Typel, D. Galaviz, K. Sümmerer, A. Coc, F. Uhlig, F. Attallah, M. Caamano, D. Cortina, H. Geissel, M. Hellström, N. Iwasa, J. Kiener, P. Koczon, B. Kohlmeyer, P. Mohr, E. Schwab, K. Schwarz, F. Schümann, P. Senger, O. Sorlin, V. Tatischeff, J. P. Thibaud, E. Vangioni, A. Wagner, and W. Walus, High-energy break-up of 6Li as a tool to study the Big-Bang nucleosynthesis reaction 2H(alpha,gamma)6Li, Phys. Rev. C, 2010, 82(6): 065803, arXiv: 1011.6179
CrossRef ADS Google scholar
[ait206]
M.-M. Kang, Y. Hu, H.-B. Hu, and S.-H. Zhu, Cosmic rays during BBN as origin of lithium problem, J. Cosmol. Astropart. Phys., 2012, 1205: 011, arXiv: 1110.0163 [astroph. CO]

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(909 KB)

Accesses

Citations

Detail

Sections
Recommended

/