Material transport in dip-pen nanolithography
Keith A. Brown, Daniel J. Eichelsdoerfer, Xing Liao, Shu He, Chad A. Mirkin
Material transport in dip-pen nanolithography
Dip-pen nanolithography (DPN) is a useful method for directly printing materials on surfaces with sub-50 nm resolution. Because it involves the physical transport of materials from a scanning probe tip to a surface and the subsequent chemical interaction of that material with the surface, there are many factors to consider when attempting to understand DPN. In this review, we overview the physical and chemical processes that are known to play a role in DPN. Through a detailed review of the literature, we classify inks into three general categories based on their transport properties, and highlight the myriad ways that DPN can be used to perform chemistry at the tip of a scanning probe.
dip-pen nanolithography / scanning probe lithography / materials transport
[1] |
R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, “Dip-pen” nanolithography, Science, 1999, 283(5402): 661
CrossRef
ADS
Google scholar
|
[2] |
S. H. Hong, J. Zhu, and C. A. Mirkin, Multiple ink nanolithography: Toward a multiple-pen nano-plotter, Science, 1999, 286(5439): 523
CrossRef
ADS
Google scholar
|
[3] |
D. S. Ginger, H. Zhang, and C. A. Mirkin, The evolution of dip-pen nanolithography, Angew. Chem. Int. Ed., 2004, 43(1): 30
CrossRef
ADS
Google scholar
|
[4] |
K. Salaita, Y. H. Wang, and C. A. Mirkin, Applications of dip-pen nanolithography, Nature Nanotech., 2007, 2(3): 145
CrossRef
ADS
Google scholar
|
[5] |
C. C. Wu, D. N. Reinhoudt, C. Otto, V. Subramaniam, and A. H. Velders, Strategies for patterning biomolecules with dip-pen nanolithography, Small, 2011, 7(8): 989
CrossRef
ADS
Google scholar
|
[6] |
F. W. Huo, Z. J. Zheng, G. F. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, Polymer pen lithography, Science, 2008, 321(5896): 1658
CrossRef
ADS
Google scholar
|
[7] |
W. Shim, A. B. Braunschweig, X. Liao, J. N. Chai, J. K. Lim, G. F. Zheng, and C. A. Mirkin, Hard-tip, soft-spring lithography, Nature, 2011, 469(7331): 516
CrossRef
ADS
Google scholar
|
[8] |
K. A. Brown, D. J. Eichelsdoerfer, W. Shim, B. Rasin, B. Radha, X. Liao, A. L. Schmucker, G. Liu, and C. A. Mirkin, A cantilever-free approach to dot-matrix nano printing, Proc. Natl. Acad. Sci. USA, 2013, 110(32): 12921
CrossRef
ADS
Google scholar
|
[9] |
L. R. Giam and C. A. Mirkin, Cantilever-free scanning probe molecular printing, Angew. Chem. Int. Ed., 2011, 50(33): 7482
CrossRef
ADS
Google scholar
|
[10] |
J. Jang, G. C. Schatz, and M. A. Ratner, Liquid meniscus condensation in dip-pen nanolithography, J. Chem. Phys., 2002, 116(9): 3875
CrossRef
ADS
Google scholar
|
[11] |
S. K. Saha and M. L. Culpepper, An ink transport model for prediction of feature size in dip pen nanolithography, J. Phys. Chem. C, 2010, 114(36): 15364
CrossRef
ADS
Google scholar
|
[12] |
B. L. Weeks, A. Noy, A. E. Miller, and J. J. De Yoreo, Effect of dissolution kinetics on feature size in dip-pen nanolithography, Phys. Rev. Lett., 2002, 88(25): 255505
CrossRef
ADS
Google scholar
|
[13] |
J. Y. Jang, S. H. Hong, G. C. Schatz, and M. A. Ratner, Self-assembly of ink molecules in dip-pen nanolithography: A diffusion model, J. Chem. Phys., 2001, 115(6): 2721
CrossRef
ADS
Google scholar
|
[14] |
N. Cho, S. Ryu, B. Kim, G. C. Schatz, and S. Hong, Phase of molecular ink in nanoscale direct deposition processes, J. Chem. Phys., 2006, 124(2): 024714
CrossRef
ADS
Google scholar
|
[15] |
H. Kim and J. Jang, Serial pushing model for the selfassembly in dip-pen nanolithography, J. Phys. Chem. A, 2009, 113(16): 4313
CrossRef
ADS
Google scholar
|
[16] |
H. Kim, G. C. Schatz, and J. Jang, Simplistic model for the dendritic growth of a monolayer in dip pen nanolithography, J. Phys. Chem. C, 2010, 114(4): 1922
CrossRef
ADS
Google scholar
|
[17] |
C. D.Wu, T. H. Fang, and J. F. Lin, Effect of chain length of self-assembled monolayers in dip-pen nanolithography using molecular dynamics simulations, J. Colloid Interface Sci., 2011, 361(1): 316
CrossRef
ADS
Google scholar
|
[18] |
J. R. Felts, S. Somnath, R. H. Ewoldt, and W. P. King, Nanometer-scale flow of molten polyethylene from a heated atomic force microscope tip, Nanotechnology, 2012, 23(21): 215301
CrossRef
ADS
Google scholar
|
[19] |
G. Liu, Y. Zhou, R. S. Banga, R. Boya, K. A. Brown, A. J. Chipre, S. T. Nguyen, and C. A. Mirkin, The role of viscosity on polymer ink transport in dip-pen nanolithography, Chem. Sci., 2013, 4(5): 2093
CrossRef
ADS
Google scholar
|
[20] |
S. Rozhok, R. Piner, and C. A. Mirkin, Dip-pen nanolithography: What controls ink transport? J. Phys. Chem. B, 2003, 107(3): 751
CrossRef
ADS
Google scholar
|
[21] |
E. J. Peterson, B. L. Weeks, J. J. De Yoreo, and P. V. Schwartz, Effect of environmental conditions on dip pen nanolithography of mercaptohexadecanoic acid, J. Phys. Chem. B, 2004, 108(39): 15206
CrossRef
ADS
Google scholar
|
[22] |
B. L.Weeks, M. W. Vaughn, and J. J. DeYoreo, Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy, Langmuir, 2005, 21(18): 8096
CrossRef
ADS
Google scholar
|
[23] |
B. L. Weeks and J. J. DeYoreo, Dynamic meniscus growth at a scanning probe tip in contact with a gold substrate, J Phys. Chem. B, 2006, 110(21): 10231
CrossRef
ADS
Google scholar
|
[24] |
S. Rozhok, P. Sun, R. Piner, M. Lieberman, and C. A. Mirkin, AFM study of water meniscus formation between an AFM tip and NaCl substrate, J. Phys. Chem. B, 2004108(23): 7814
CrossRef
ADS
Google scholar
|
[25] |
O. A. Nafday, M. W. Vaughn, and B. L. Weeks, Evidence of meniscus interface transport in dip-pen nanolithography: An annular diffusion model, J. Chem. Phys., 2006, 125(14): 144703
CrossRef
ADS
Google scholar
|
[26] |
S. Chung, J. R. Felts, D. Wang, W. P. King, and J. J. De Yoreo, Temperature-dependence of ink transport during thermal dip-pen nanolithography, Appl. Phys. Lett., 2011, 99(19): 193101
CrossRef
ADS
Google scholar
|
[27] |
L. R. Giam, Y. Wang, and C. A. Mirkin, Nanoscale molecular transport: The case of dip-pen nanolithography, J. Phys Chem. A, 2009, 113(16): 3779
CrossRef
ADS
Google scholar
|
[28] |
J. R. Hampton, A. A. Dameron, and P. S. Weiss, Transport rates vary with deposition time in dip-pen nanolithography, J. Phys. Chem. B, 2005, 109(49): 23118
CrossRef
ADS
Google scholar
|
[29] |
T. H. Wu, H. H. Lu, and C. W. Lin, Dependence of transport rate on area of lithography and pretreatment of tip in dip-pen nanolithography, Langmuir, 2012, 28(41): 14509
CrossRef
ADS
Google scholar
|
[30] |
L. Huang, Y. H. Chang, J. J. Kakkassery, and C. A. Mirkin, Dip-pen nanolithography of highmeltingtemperature molecules, J. Phys. Chem. B, 2006, 110(42): 20756
CrossRef
ADS
Google scholar
|
[31] |
O. A. Nafday, R. Pitchimani, B. L. Weeks, and J. Haaheim, Patterning high explosives at the nanoscale, Propellants Explos Pyrotech., 2006, 31(5): 376
CrossRef
ADS
Google scholar
|
[32] |
M. Su and V. P. Dravid, Colored ink dip-pen nanolithography, Appl. Phys. Lett., 2002, 80(23): 4434
CrossRef
ADS
Google scholar
|
[33] |
H. Jung, C. K. Dalal, S. Kuntz, R. Shah, and C. P. Collier, Surfactant activated dip-pen nanolithography, Nano Lett., 2004, 4(11): 2171
CrossRef
ADS
Google scholar
|
[34] |
R. McKendry, W. T. S. Huck, B. Weeks, M. Fiorini, C. Abell, and T. Rayment, Creating nanoscale patterns of dendrimers on silicon surfaces with dip-pen nanolithography, Nano Lett., 2002, 2(7): 713
CrossRef
ADS
Google scholar
|
[35] |
Z. Zheng, J. W. Jang, G. Zheng, and C. A. Mirkin, Topographically flat, chemically patterned PDMS stamps made by dip-pen nanolithography, Angew. Chem. Int. Ed., 2008, 47(51): 9951
CrossRef
ADS
Google scholar
|
[36] |
J. W. Jang, R. G. Sanedrin, A. J. Senesi, Z. Zheng, X. Chen, S. Hwang, L. Huang, and C. A. Mirkin, Generation of metal photomasks by dip-pen nanolithography, Small, 2009, 5(16): 1850
CrossRef
ADS
Google scholar
|
[37] |
J. A. Chai, F. W. Huo, Z. J. Zheng, L. R. Giam, W. Shim, and C. A. Mirkin, Scanning probe block copolymer lithography, Proc. Natl. Acad. Sci. USA, 2010, 107(47): 20202
CrossRef
ADS
Google scholar
|
[38] |
J. H. Lim and C. A. Mirkin, Electrostatically driven dip-pen nanolithography of conducting polymers, Adv. Mater., 2002, 14(20): 1474
CrossRef
ADS
Google scholar
|
[39] |
H. Nakashima, M. J. Higgins, C. O’Connell, K. Torimitsu, and G. G. Wallace, Liquid deposition patterning of conducting polymer ink onto hard and soft flexible substrates via dip-pen nanolithography, Langmuir, 2012, 28(1): 804
CrossRef
ADS
Google scholar
|
[40] |
L. S. Jung and C. T. Campbell, Sticking probabilities in adsorption of alkanethiols from liquid ethanol solution onto gold, J. Phys. Chem. B, 2000, 104(47): 11168
CrossRef
ADS
Google scholar
|
[41] |
A. J. Senesi, D. I. Rozkiewicz, D. N. Reinhoudt, and C. A. Mirkin, Agarose-assisted dip-pen nanolithography of oligonucleotides and proteins, ACS Nano, 2009, 3(8): 2394
CrossRef
ADS
Google scholar
|
[42] |
L. Huang, A. B. Braunschweig, W. Shim, L. Qin, J. K. Lim, S. J. Hurst, F. Huo, C. Xue, J. W. Jang, and C. A. Mirkin, Matrix-assisted dip-pen nanolithography and polymer pen lithography, Small, 2010, 6(10): 1077
CrossRef
ADS
Google scholar
|
[43] |
D. J. Eichelsdoerfer, K. A. Brown, R. Boya, W. Shim, and C. A. Mirkin, Tuning the spring constant of cantilever-free tip arrays, Nano Lett., 2013, 13(2): 664
CrossRef
ADS
Google scholar
|
[44] |
L. R. Giam, S. He, N. E. Horwitz, D. J. Eichelsdoerfer, J. Chai, Z. Zheng, D. Kim, W. Shim, and C. A. Mirkin, Positionally defined, binary semiconductor nanoparticles synthesized by scanning probe block copolymer lithography, Nano Lett., 2012, 12(2): 1022
CrossRef
ADS
Google scholar
|
[45] |
G. Liu, D. J. Eichelsdoerfer, B. Rasin, Y. Zhou, K. A. Brown, X. Liao, and C. A. Mirkin, Delineating the pathways for the site-directed synthesis of individual nanoparticles on surfaces, Proc. Natl. Acad. Sci. USA, 2013, 110(3): 887
CrossRef
ADS
Google scholar
|
[46] |
A. Ivanisevic and C. A. Mirkin, “Dip-pen” nanolithography on semiconductor surfaces, J. Am. Chem. Soc., 2001, 123(32): 7887
CrossRef
ADS
Google scholar
|
[47] |
L.M. Demers, D. S. Ginger, S. J. Park, Z. Li, S.W. Chung, and C. A. Mirkin, Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography, Science, 2002, 296(5574): 1836
CrossRef
ADS
Google scholar
|
[48] |
H. T. Wang, O. A. Nafday, J. R. Haaheim, E. Tevaarwerk, N. A. Amro, R. G. Sanedrin, C. Y. Chang, F. Ren, and S. J. Pearton, Toward consductive traces: Dip Pen Nanolithography (R) of silver nanoparticle-based inks, Appl. Phys. Lett., 2008, 93(14): 143105
CrossRef
ADS
Google scholar
|
[49] |
A. Hernandez-Santana, E. Irvine, K. Faulds, and D. Graham, Rapid prototyping of poly(dimethoxysiloxane) dot arrays by dip-pen nanolithography, Chem. Sci., 2011, 2(2): 211
CrossRef
ADS
Google scholar
|
[50] |
The Merck Index–An Encyclopedia of Chemicals, Drugs, and Biologicals, Whitehouse Station: Merck and Co., Inc., 2001
|
[51] |
Kirk-Othmer Encyclopedia of Chemical Technology, New York: John Wiley and Sons, 1994
|
[52] |
D. R. Lide, Handbook of Chemistry and Physics, Cleveland, Ohio: Chemcial Rubber Publishing Co., 1948
|
[53] |
F. Hamouda, H. Sahaf, S. Held, G. Barbillon, P. Gogol, E. Moyen, A. Aassime, J. Moreau, M. Canva, J. M. Lourtioz, M. Hanbücken, and B. Bartenlian, Large area nanopatterning by combined anodic aluminum oxide and soft UV-NIL technologies for applications in biology, Microelectron. Eng., 2011, 88(8): 2444
CrossRef
ADS
Google scholar
|
[54] |
A. K. Mehrotra, Correlation and prediction of the viscosity of pure hydrocarbons, Can. J. Chem. Eng., 1994, 72(3): 554
CrossRef
ADS
Google scholar
|
[55] |
C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, Fundamentals of sol-gel dip coating, Thin Solid Films, 1991, 201(1): 97
CrossRef
ADS
Google scholar
|
[56] |
P. V. Schwartz, Molecular transport from an atomic force microscope Tip: A comparative study of dip-pen nanolithography, Langmuir, 2002, 18(10): 4041
CrossRef
ADS
Google scholar
|
[57] |
P. E. Sheehan and L. J. Whitman, Thiol diffusion and the role of humidity in “dip pen nanolithography”, Phys. Rev. Lett., 2002, 88(15): 156104
CrossRef
ADS
Google scholar
|
[58] |
Q. Tang, S. Shi, H. Huang, and L. M. Zhou, Fabrication of highly oriented microstructures and nanostructures of ferroelectric P(VDF-TrFE) copolymer via dip-pen nanolithography, Superlattices Microstruct., 2004, 36(1-3): 21
CrossRef
ADS
Google scholar
|
[59] |
H. Jung, R. Kulkarni, and C. P. Collier, Dip-pen nanolithography of reactive alkoxysilanes on glass, J. Am. Chem. Soc., 2003, 125(40): 12096
CrossRef
ADS
Google scholar
|
[60] |
J. H. Lim, D. S. Ginger, K. B. Lee, J. Heo, J. M. Nam, and C. A. Mirkin, Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces, Angew. Chem. Int. Ed., 2003, 42(20): 2309
CrossRef
ADS
Google scholar
|
[61] |
E. Bellido, R. de Miguel, J. Sesé, D. Ruiz-Molina, A. Lostao, and D. Maspoch, Nanoscale positioning of inorganic nanoparticles using biological ferritin arrays fabricated by dip-pen nanolithography, Scanning, 2010, 32(1): 35
|
[62] |
J. Kim, Y. H. Shin, S. H. Yun, D. S. Choi, J. H. Nam, S. R. Kim, S. K.Moon, B. H. Chung, J. H. Lee, J. H. Kim, K. Y. Kim, K. M. Kim, and J. H. Lim, Direct-write patterning of bacterial cells by dip-pen nanolithography, J. Am. Chem. Soc., 2012, 134(40): 16500
CrossRef
ADS
Google scholar
|
[63] |
M. Yang, P. E. Sheehan, W. P. King, and L. J. Whitman, Direct writing of a conducting polymer with molecularlevel control of physical dimensions and orientation, J. Am. Chem. Soc., 2006, 128(21): 6774
CrossRef
ADS
Google scholar
|
[64] |
W. K. Lee, L. J. Whitman, J. Lee, W. P. King, and P. E. Sheehan, The nanopatterning of a stimulusresponsive polymer by thermal dip-pen nanolithography, Soft Matter, 2008, 4(9): 1844
CrossRef
ADS
Google scholar
|
[65] |
W. Shim, K. A. Brown, X. Zhou, B. Rasin, X. Liao, and C. A. Mirkin, Multifunctional cantilever-free scanning probe arrays coated with multilayer graphene, Proc. Natl. Acad. Sci. USA, 2012, 109(45): 18312
CrossRef
ADS
Google scholar
|
[66] |
W. K. Lee, Z. Dai, W. P. King, and P. E. Sheehan, Maskless nanoscale writing of nanoparticletpolymer composites and nanoparticle assemblies using thermal nanoprobes, Nano Lett., 2010, 10(1): 129
CrossRef
ADS
Google scholar
|
[67] |
B. A. Nelson, W. P. King, A. R. Laracuente, P. E. Sheehan, and L. J. Whitman, Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography, Appl. Phys. Lett., 2006, 88(3): 033104
CrossRef
ADS
Google scholar
|
[68] |
P. E. Sheehan, L. J. Whitman, W. P. King, and B. A. Nelson, Nanoscale deposition of solid inks via thermal dip pen nanolithography, Appl. Phys. Lett., 2004, 85(9): 1589
CrossRef
ADS
Google scholar
|
[69] |
K. H. Kim, J. D. Kim, Y. J. Kim, S. H. Kang, S. Y. Jung, and H. Jung, Protein immobilization without purification via dip-pen nanolithography, Small, 2008, 4(8): 1089
CrossRef
ADS
Google scholar
|
[70] |
K. Salaita, A. Amarnath, T. B. Higgins, and C. A. Mirkin, The effects of organic vapor on alkanethiol deposition via Dip-pen nanolithography, Scanning, 2010, 32(1): 9
|
[71] |
X. Zhou, S. He, K. A. Brown, J. Mendez-Arroyo, F. Boey, and C. A. Mirkin, Locally altering the electronic properties of graphene by nanoscopically doping it with Rhodamine 6G, Nano Lett., 2013, 13(4): 1616
|
[72] |
J. R. Hampton, A. A. Dameron, and P. S. Weiss, Double-ink dip-pen nanolithography studies elucidate molecular transport, J. Am. Chem. Soc., 2006, 128(5): 1648
CrossRef
ADS
Google scholar
|
[73] |
A. Ulman, Formation and structure of self-assembled monolayers, Chem. Rev., 1996, 96(4): 1533
CrossRef
ADS
Google scholar
|
[74] |
L. H. Dubois and R. G. Nuzzo, Synthesis, structure, and properties of model organic surfaces, Annu. Rev. Phys Chem., 1992, 43(1): 437
CrossRef
ADS
Google scholar
|
[75] |
J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev., 2005, 105(4): 1103
CrossRef
ADS
Google scholar
|
[76] |
F. Schreiber, Structure and growth of self-assembling monolayers, Prog. Surf. Sci., 2000, 65(5–8): 151
CrossRef
ADS
Google scholar
|
[77] |
K. B. Lee, S. J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich, Protein nanoarrays generated by dip-pen nanolithography, Science, 2002, 295(5560): 1702
CrossRef
ADS
Google scholar
|
[78] |
R. A. Vega, D. Maspoch, K. Salaita, and C. A. Mirkin, Nanoarrays of single virus particles, Angew. Chem. Int. Ed., 2005, 44(37): 6013
CrossRef
ADS
Google scholar
|
[79] |
L. R. Giam, M. D. Massich, L. Hao, L. Shin Wong, C. C. Mader, and C. A. Mirkin, Scanning probe-enabled nanocombinatorics define the relationship between fibronectin feature size and stem cell fate, Proc. Natl. Acad. Sci. USA, 2012, 109(12): 4377
CrossRef
ADS
Google scholar
|
[80] |
C. L. Cheung, J. A. Camarero, B. W. Woods, T. Lin, J. E. Johnson, and J. J. De Yoreo, Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography, J. Am. Chem. Soc., 2003, 125(23): 6848
CrossRef
ADS
Google scholar
|
[81] |
L. S. Wong, C. V. Karthikeyan, D. J. Eichelsdoerfer, J. Micklefield, and C. A. Mirkin, A methodology for preparing nanostructured biomolecular interfaces with high enzymatic activity, Nanoscale, 2012, 4(2): 659
CrossRef
ADS
Google scholar
|
[82] |
D. J. Pena, M. P. Raphael, and J. M. Byers, “Dip-pen” nanolithography in registry with photolithography for biosensor development, Langmuir, 2003, 19(21): 9028
CrossRef
ADS
Google scholar
|
[83] |
K. Salaita, A. Amarnath, D. Maspoch, T. B. Higgins, and C. A. Mirkin, Spontaneous “phase separation” of patterned binary alkanethiol mixtures, J. Am. Chem. Soc., 2005, 127(32): 11283
CrossRef
ADS
Google scholar
|
[84] |
S. W. Lee, B. K. Oh, R. G. Sanedrin, K. Salaita, T. Fujigaya, and C. A. Mirkin, Biologically active protein nanoarrays generated using parallel dip-pen nanolithography, Adv. Mater., 2006, 18(9): 1133
CrossRef
ADS
Google scholar
|
[85] |
J. W. Jang, D. Maspoch, T. Fujigaya, and C. A. Mirkin, A “molecular eraser” for dip-pen nanolithography, Small, 2007, 3(4): 600
CrossRef
ADS
Google scholar
|
[86] |
J.-W. Jang, J. M. Collins, and S. Nettikadan, User-friendly universal and durable subcellular-scaled template for protein binding: Application to single-cell patterning, Adv. Funct. Mater., 2013, DOI: 10.1002/adfm.201301088
CrossRef
ADS
Google scholar
|
[87] |
S. E. Kooi, L. A. Baker, P. E. Sheehan, and L. J. Whitman, Dip-pen nanolithography of chemical templates on silicon oxide, Adv. Mater., 2004, 16(12): 1013
CrossRef
ADS
Google scholar
|
[88] |
Y. Cho and A. Ivanisevic, Peptides on GaAs surfaces: Comparison between features generated by microcontact printing and dip-pen nanolithography, Langmuir, 2006, 22(21): 8670
CrossRef
ADS
Google scholar
|
[89] |
H. P. Wampler, D. Y. Zemlyanov, and A. Ivanisevic, Comparison between patterns generated by microcontact printing and dip-pen nanolithography on InP surfaces, J. Phys. Chem. C, 2007, 111(49): 17989
CrossRef
ADS
Google scholar
|
[90] |
R. Flores-Perez, D. Y. Zemlyanov, and A. Ivanisevic, Lithography on GaP(100) surfaces, Surf. Sci., 2008, 602(11): 1993
CrossRef
ADS
Google scholar
|
[91] |
J. W. J. Slavin and A. Ivanisevic, Dip-pen nanolithography on etched InAs(100) using homogeneous and mixed ink solutions, J. Vac. Sci. Technol. B, 2009, 27(3): 1215
CrossRef
ADS
Google scholar
|
[92] |
S. Matsubara, H. Yamamoto, K. Oshima, E. Mouri, and H. Matsuoka, Fabrication of nanostructure by diels–alder reaction, Chem. Lett., 2002, 31(9): 886
CrossRef
ADS
Google scholar
|
[93] |
G. H. Degenhart, B. Dordi, H. Schönherr, and G. J. Vancso, Micro- and nanofabrication of robust reactive arrays based on the covalent coupling of dendrimers to activated monolayers, Langmuir, 2004, 20(15): 6216
CrossRef
ADS
Google scholar
|
[94] |
Y. S. Chi and I. S. Choi, Dip-pen nanolithography using the amide-coupling reaction with interchain carboxylic anhydride-terminated self-assembled monolayers, Adv. Funct. Mater., 2006, 16(8): 1031
CrossRef
ADS
Google scholar
|
[95] |
L. K. Blasdel, S. Banerjee, and S. S. Wong, Selective borohydride reduction using functionalized atomic force microscopy tips, Langmuir, 2002, 18(13): 5055
CrossRef
ADS
Google scholar
|
[96] |
A. B. Braunschweig, A. J. Senesi, and C. A. Mirkin, Redox-activating dip-pen nanolithography (RA-DPN), J. Am. Chem. Soc., 2009, 131(3): 922
CrossRef
ADS
Google scholar
|
[97] |
B. W. Maynor, Y. Li, and J. Liu, Au “ink” for AFM “dippen” nanolithography, Langmuir, 2001, 17(9): 2575
CrossRef
ADS
Google scholar
|
[98] |
H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click chemistry: Diverse chemical function from a few good reactions, Angew. Chem. Int. Ed., 2001, 40(11): 2004
CrossRef
ADS
Google scholar
|
[99] |
D. A. Long, K. Unal, R. C. Pratt, M. Malkoch, and J. Frommer, Localized “click” chemistry through dip-pen nanolithography, Adv. Mater., 2007, 19(24): 4471
CrossRef
ADS
Google scholar
|
[100] |
S. Bian, J. He, K. B. Schesing, and A. B. Braunschweig, Polymer pen lithography (ppl)-induced site-specific click chemistry for the formation of functional glycan arrays, Small, 2012, 8(13): 2000
CrossRef
ADS
Google scholar
|
[101] |
L. Ding, Y. Li, H. Chu, X. Li, and J. Liu, Creation of cadmium sulfide nanostructures using afm dip-pen nanolithography, J. Phys. Chem. B, 2005, 109(47): 22337
CrossRef
ADS
Google scholar
|
[102] |
H. Chu, L. Ding, J. Wang, X. Li, L. You, and Y. Li, In situ epitaxial growth of triangular CdS nanoplates on mica by dip-pen nanolithography, J. Phys. Chem. C, 2008, 112(48): 18938
CrossRef
ADS
Google scholar
|
[103] |
L. Basabe-Desmonts, C. C. Wu, K. O. van der Werf, M. Peter, M. Bennink, C. Otto, A. H. Velders, D. N. Reinhoudt, V. Subramaniam, and M. Crego-Calama, Fabrication and visualization of metal-ion patterns on glass by dip-pen nanolithography, ChemPhysChem, 2008, 9(12): 1680
CrossRef
ADS
Google scholar
|
[104] |
A. Noy, A. E. Miller, J. E. Klare, B. L. Weeks, B.W. Woods, and J. J. DeYoreo, Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography, Nano Lett., 2002, 2(2): 109
CrossRef
ADS
Google scholar
|
[105] |
H. Zhou, Z. Li, A. Wu, G. Wei, and Z. Liu, Direct patterning of rhodamine 6G molecules on mica by dip-pen nanolithography, Appl. Surf. Sci., 2004, 236(1–4): 18
CrossRef
ADS
Google scholar
|
[106] |
A. Martínez-Otero, J. Hernando, D. Ruiz-Molina, and D. Maspoch, pH-responsive fluorescent nanoarrays fabricated by direct-write parallel dip-pen nanolithography, Small, 2008, 4(12): 2131
CrossRef
ADS
Google scholar
|
[107] |
P. Manandhar, J. Jang, G. C. Schatz, M. A. Ratner, and S. Hong, Anomalous surface diffusion in nanoscale direct deposition processes, Phys. Rev. Lett., 2003, 90(11): 115505
CrossRef
ADS
Google scholar
|
[108] |
M. Su, M. Aslam, L. Fu, N. Q. Wu, and V. P. Dravid, Dippen nanopatterning of photosensitive conducting polymer using a monomer ink, Appl. Phys. Lett., 2004, 84(21): 4200
CrossRef
ADS
Google scholar
|
[109] |
G. Agarwal, L. A. Sowards, R. R. Naik, and M. O. Stone, Dip-pen nanolithography in tapping mode, J. Am. Chem. Soc., 2003, 125(2): 580
CrossRef
ADS
Google scholar
|
[110] |
H. Jiang and S. I. Stupp, Dip-pen patterning and surface assembly of peptide amphiphiles, Langmuir, 2005, 21(12): 5242
CrossRef
ADS
Google scholar
|
[111] |
M. Yu, D. Nyamjav, and A. Ivanisevic, Fabrication of positively and negatively charged polyelectrolyte structures by dippen nanolithography, J. Mater. Chem., 2005, 15(6): 649
CrossRef
ADS
Google scholar
|
[112] |
S. W. Lee, R. G. Sanedrin, B. K. Oh, and C. A. Mirkin, Nanostructured polyelectrolyte multilayer organic thin films generated via parallel dip-pen nanolithography, Adv. Mater., 2005, 17(22): 2749
CrossRef
ADS
Google scholar
|
[113] |
S. Lenhert, P. Sun, Y. H. Wang, H. Fuchs, and C. A. Mirkin, Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns, Small, 2007, 3(1): 71
CrossRef
ADS
Google scholar
|
[114] |
M. Tanaka and E. Sackmann, Polymer-supported membranes as models of the cell surface, Nature, 2005, 437(7059): 656
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |