Spin–orbit coupling in Bose–Einstein condensate and degenerate Fermi gases

Peng-Jun Wang, Jing Zhang

PDF(1264 KB)
PDF(1264 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (5) : 598-612. DOI: 10.1007/s11467-013-0377-x
REVIEW ARTICLE
REVIEW ARTICLE

Spin–orbit coupling in Bose–Einstein condensate and degenerate Fermi gases

Author information +
History +

Abstract

We review our recent experimental realization and investigation of a spin–orbit (SO) coupled Bose–Einstein condensate (BEC) and quantum degenerate Fermi gas. By using two counter-propagating Raman lasers and controlling the different frequency of two Raman lasers to engineer the atom–light interaction, we first study the SO coupling in BEC. Then we study SO coupling in Fermi gas. We observe the spin dephasing in spin dynamics and momentum distribution asymmetry of the equilibrium state as hallmarks of SO coupling in a Fermi gas. To clearly reveal the property of SO coupling Fermi gas, we also study the momentum-resolved radio-frequency spectroscopy which characterizes the energy–momentum dispersion and spin composition of the quantum states. We observe the change of fermion surfaces in different helicity branches with different atomic density, which indicates that a Lifshitz transition of the Fermi surface topology change can be found by further cooling the system. At last, we study the momentum-resolved Raman spectroscopy of an ultracold Fermi gas.

Graphical abstract

Keywords

spin–orbit coupling / Bose–Einstein condensate / Fermi gases / topological change / momentum-resolved radio-frequency spectroscopy / momentum-resolved Raman spectroscopy

Cite this article

Download citation ▾
Peng-Jun Wang, Jing Zhang. Spin–orbit coupling in Bose–Einstein condensate and degenerate Fermi gases. Front. Phys., 2014, 9(5): 598‒612 https://doi.org/10.1007/s11467-013-0377-x

References

[1]
W. Ketterle and M. W. Zwierlein, Making, probing and understanding ultracold Fermi gases, Rivista del Nuovo Cimento, 2008, 31: 247; arXiv: 0801.2500
[2]
C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys., 2010, 82(2): 647
CrossRef ADS Google scholar
[3]
I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations with ultracold quantum gases, Nat. Phys., 2012, 8(4): 267
CrossRef ADS Google scholar
[4]
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature, 2002, 415(6867): 39
CrossRef ADS Google scholar
[5]
F. Jendrzejewski, A. Bernard, K. Müller, P. Cheinet, V. Josse, M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, and P. Bouyer, Three-dimensional localization of ultracold atoms in an optical disordered potential, Nat. Phys., 2012, 8: 398
CrossRef ADS Google scholar
[6]
E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Dynamics of collapsing and exploding Bose–Einstein condensates, Nature, 2001, 412(6844): 295
CrossRef ADS Google scholar
[7]
E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E. Wieman, Atom–molecule coherence in a Bose–Einstein condensate, Nature, 2002, 417(6888): 529
CrossRef ADS Google scholar
[8]
C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett., 2004, 92(4): 040403
CrossRef ADS Google scholar
[9]
T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl, and R. Grimm, Evidence for Efimov quantum states in an ultracold gas of caesium atoms, Nature, 2006, 440(7082): 315
CrossRef ADS Google scholar
[10]
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science, 2006, 314(5806): 1757
CrossRef ADS Google scholar
[11]
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin hall insulator state in HgTe quantum wells, Science, 2007, 318(5851): 766
CrossRef ADS Google scholar
[12]
K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., 2000, 84(5): 806
CrossRef ADS Google scholar
[13]
J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates, Science, 2001, 292(5516): 476
CrossRef ADS Google scholar
[14]
E. Hodby, G. Hechenblaikner, S. A. Hopkins, O. M. Maragò, and C. J. Foot, Vortex nucleation in Bose–Einstein condensates in an oblate, purely magnetic potential, Phys. Rev. Lett., 2002, 88(1): 010405
CrossRef ADS Google scholar
[15]
A. S. Sorensen, E. Demler, and M. D. Lukin, Fractional quantum Hall states of atoms in optical lattices, Phys. Rev. Lett., 2005, 94(8): 086803
CrossRef ADS Google scholar
[16]
V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A. Cornell, Rapidly rotating Bose–Einstein condensates in and near the lowest Landau level, Phys. Rev. Lett., 2004, 92(4): 040404
CrossRef ADS Google scholar
[17]
M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices and superfluidity in a strongly interacting Fermi gas, Nature, 2005, 435(7045): 1047
CrossRef ADS Google scholar
[18]
Y. J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman, Bose–Einstein condensate in a uniform light-induced vector potential, Phys. Rev. Lett., 2009, 102(13): 130401
CrossRef ADS Google scholar
[19]
Y. J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman, Synthetic magnetic fields for ultracold neutral atoms, Nature, 2009, 462(7273): 628
CrossRef ADS Google scholar
[20]
Y. J. Lin, R. L. Compton, K. Jimnez-Garca, W. D. Phillips, J. V. Porto, and I. B. Spielman, A synthetic electric force acting on neutral atoms, Nat. Phys., 2011, 7(7): 531
CrossRef ADS Google scholar
[21]
Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose-Einstein condensates, Nature, 2011, 471(7336): 83
CrossRef ADS Google scholar
[22]
Z. Fu, P. Wang, S. Chai, L. Huang, and J. Zhang, Bose–Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers, Phys. Rev. A, 2011, 84(4): 043609
CrossRef ADS Google scholar
[23]
J. Y. Zhang, S. C. Ji, Z. Chen, L. Zhang, Z. D. Du, B. Yan, G. S. Pan, B. Zhao, Y. J. Deng, H. Zhai, S. Chen, and J. W. Pan, Collective dipole oscillations of a spin-orbit coupled Bose–Einstein condensate, Phys. Rev. Lett., 2012, 109(11): 115301
CrossRef ADS Google scholar
[24]
C. Qu, C. Hamner, M. Gong, C. Zhang, and P. Engels, Non-equilibrium spin dynamics and Zitterbewegung in quenched spin-orbit coupled Bose–Einstein condensates, arXiv: 1301.0658, 2013
[25]
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef ADS Google scholar
[26]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys., 2011, 83(4): 1057
CrossRef ADS Google scholar
[27]
P. Wang, Z. Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett., 2012, 109(9): 095301
CrossRef ADS Google scholar
[28]
L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Spin-injection spectroscopy of a spin–orbit coupled Fermi gas, Phys. Rev. Lett., 2012, 109(9): 095302
CrossRef ADS Google scholar
[29]
M. Gong, S. Tewari, and C. W. Zhang, BCS-BEC crossover and topological phase transition in 3D spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett., 2011, 107(19): 195303
CrossRef ADS Google scholar
[30]
Z. Q. Yu and H. Zhai, Spin–orbit coupled Fermi gases across a Feshbach resonance, Phys. Rev. Lett., 2011, 107(19): 195305
CrossRef ADS Google scholar
[31]
L. Jiang, X. J. Liu, H. Hu, and H. Pu, Rashba spin–orbitcoupled atomic Fermi gases, Phys. Rev. A, 2011, 84(6): 063618
CrossRef ADS Google scholar
[32]
X. J. Liu, L. Jiang, H. Pu, and H. Hu, Probing Majorana fermions in spin–orbit-coupled atomic Fermi gases, Phys. Rev. A, 2012, 85(2): 021603
CrossRef ADS Google scholar
[33]
R. Liao, Y. X. Yu, and W. M. Liu, Tuning the tricritical point with spin–orbit coupling in polarized fermionic condensates, Phys. Rev. Lett., 2012, 108(8): 080406
CrossRef ADS Google scholar
[34]
M. Gong, G. Chen, S. T. Jia, and C. W. Zhang, Searching for Majorana fermions in 2D spin–orbit coupled Fermi superfluids at finite temperature, Phys. Rev. Lett., 2012, 109(10): 105302
CrossRef ADS Google scholar
[35]
H. Hu, H. Pu, J. Zhang, S. G. Peng, and X. J. Liu, Radiofrequency spectroscopy of weakly bound molecules in spin–orbit coupled atomic Fermi gases, arXiv: 1208.5841, 2012
[36]
Z. Zheng, M. Gong, Y. C. Zhang, X. B. Zou, C. W. Zhang, and G. Guo, Fulde–Ferrell–Larkin–Ovchinnikov phases in two-dimensional spin–orbit coupled degenerate Fermi gases, arXiv: 1212.6826, 2012
[37]
V. Galitski and I. B. Spielman, Spin–orbit coupling in quantum gases, Nature, 2013, 494(7435): 49
CrossRef ADS Google scholar
[38]
J. Radi, A. Di Ciolo, K. Sun, and V. Galitski, Exotic quantum spin models in spin–orbit-coupled Mott insulators, Phys. Rev. Lett., 2012, 109(8): 085303
CrossRef ADS Google scholar
[39]
W. S. Cole, S. Zhang, A. Paramekanti, and N. Trivedi, Bose–Hubbard models with synthetic spin–orbit coupling: Mott insulators, spin textures, and superfluidity, Phys. Rev. Lett., 2012, 109(8): 085302
CrossRef ADS Google scholar
[40]
Z. Cai, X. Zhou, and C. Wu, Magnetic phases of bosons with synthetic spin–orbit coupling in optical lattices, Phys. Rev. A, 2012, 85(6): 061605
CrossRef ADS Google scholar
[41]
D. Wei, D. Zh. Xiong, H. X. Chen, and J. Zhang, An enriched 40K source for atomic cooling, Chin. Phys. Lett., 2007, 24: 679
CrossRef ADS Google scholar
[42]
D. Xiong, H. Chen, P. Wang, X. Yu, F. Gao, and J. Zhang, Quantum degenerate Fermi–Bose mixtures of 40K and 87Rb atoms in a quadrupole-Ioffe configuration trap, Chin. Phys. Lett., 2008, 25: 843
CrossRef ADS Google scholar
[43]
P. Wang, H. Chen, D. Xiong, X. Yu, F. Gao, and J. Zhang, The design of quadrapole-Ioffe configuration trap for quantum degenerate Fermi–Bose mixtures, Acta. Phys. Sin., 2008, 57(8): 4840 (in Chinese)
[44]
D. Xiong, P. Wang, Z. Fu, S. Chai, and J. Zhang, Evaporative cooling of 87Rb atoms into Bose–Einstein condensate in an optical dipole trap, Chin. Opt. Lett., 2010, 8: 627 (in Chinese)
CrossRef ADS Google scholar
[45]
D. Xiong, P. Wang, Z. Fu, and J. Zhang, Transport of Bose–Einstein condensate in QUIC trap and separation of trapping spin states, Opt. Express, 2010, 18(2): 1649
CrossRef ADS Google scholar
[46]
I. B. Spielman, Raman processes and effective gauge potentials, Phys. Rev. A, 2009, 79(6): 063613
CrossRef ADS Google scholar
[47]
L. Zhang, J. Y. Zhang, S. C. Ji, Z. D. Du, H. Zhai, Y. J. Deng, S. Chen, P. Zhang, and J. W. Pan, Stability of excited dressed states with spin–orbit coupling, Phys. Rev. A, 2012, 87(1): 011601
CrossRef ADS Google scholar
[48]
X. J. Liu and H. Hu, Topological superfluid in onedimensional spin–orbit-coupled atomic Fermi gases, Phys. Rev. A, 2012, 85(3): 033622
CrossRef ADS Google scholar
[49]
X. J. Liu, L. Jiang, H. Pu, and H. Hu, Probing Majorana fermions in spin–orbit-coupled atomic Fermi gases, Phys. Rev. A, 2012, 85(2): 021603
CrossRef ADS Google scholar
[50]
X. J. Liu, Zh. X. Liu, and M. Cheng, Manipulating topological edge spins in a one-dimensional optical lattice, Phys. Rev. Lett., 2013, 110(7): 076401
CrossRef ADS Google scholar
[51]
L. Zhou, H. Pu, and W. Zhang, Anderson localization of cold atomic gases with effective spin–orbit interaction in a quasiperiodic optical lattice, Phys. Rev. A, 2013, 87(2): 023625
CrossRef ADS Google scholar
[52]
R. Wei and E. J. Mueller, Majorana fermions in onedimensional spin–orbit-coupled Fermi gases, Phys. Rev. A, 2012, 86(6): 063604
CrossRef ADS Google scholar
[53]
P. Wang, Z. Fu, L. Huang, and J. Zhang, Momentumresolved Raman spectroscopy of a noninteracting ultracold Fermi gas, Phys. Rev. A, 2012, 85(5): 053626
CrossRef ADS Google scholar
[54]
Z. Fu, P. Wang, L. Huang, Z. Meng, and J. Zhang, Momentum-resolved Raman spectroscopy of bound molecules in ultracold Fermi gas, Phys. Rev. A, 2012, 86(3): 033607
CrossRef ADS Google scholar
[55]
C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. H. Denschlag, and R. Grimm, Observation of the pairing gap in a strongly interacting Fermi gas, Science, 2004, 305(5687): 1128
CrossRef ADS Google scholar
[56]
J. T. Stewart, J. P. Gaebler, and D. S. Jin, Using photoemission spectroscopy to probe a strongly interacting Fermi gas, Nature, 2008, 454(7205): 744
CrossRef ADS Google scholar
[57]
J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Quantum simulation of antiferromagnetic spin chains in an optical lattice, Nature, 2011, 472(7343): 307
CrossRef ADS Google scholar
[58]
E. Altman, E. Demler, and M. D. Lukin, Probing manybody states of ultracold atoms via noise correlations, Phys. Rev. A, 2004, 70(1): 013603
CrossRef ADS Google scholar
[59]
C. A. Regal and D. S. Jin, Measurement of positive and negative scattering lengths in a Fermi gas of atoms, Phys. Rev. Lett., 2003, 90(23): 230404
CrossRef ADS Google scholar
[60]
S. Gupta, Z. Hadzibabic, M. W. Zwierlein, C. A. Stan, K. Dieckmann, C. H. Schunck, E. G. M. Van Kempen, B. J. Verhaar, and W. Ketterle, Radio-frequency spectroscopy of ultracold fermions, Science, 2003, 300(5626): 1723
CrossRef ADS Google scholar
[61]
Y. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle, Tomographic rf spectroscopy of a trapped Fermi gas at unitarity, Phys. Rev. Lett., 2007, 99(9): 090403
CrossRef ADS Google scholar
[62]
Q. Chen and K. Levin, Momentum resolved radio frequency spectroscopy in trapped fermi gases, Phys. Rev. Lett., 2009, 102(19): 190402
CrossRef ADS Google scholar
[63]
Q. Chen, Y. He, C. C. Chien, and K. Levin, Theory of radio frequency spectroscopy experiments in ultracold Fermi gases and their relation to photoemission in the cuprates, Rep. Prog. Phys., 2009, 72: 12250<?Pub Caret?>1
CrossRef ADS Google scholar
[64]
T. L. Dao, A. Georges, J. Dalibard, C. Salomon, and I. Carusotto, Measuring the one-particle excitations of ultracold fermionic atoms by stimulated Raman spectroscopy, Phys. Rev. Lett., 2007, 98(24): 240402
CrossRef ADS Google scholar
[65]
T. L. Dao, I. Carusotto, and A. Georges, Probing quasiparticle states in strongly interacting atomic gases by momentumresolved Raman photoemission spectroscopy, Phys. Rev. A, 2009, 80(2): 023627
CrossRef ADS Google scholar
[66]
G. Veeravalli, E. Kuhnle, P. Dyke, and C. J. Vale, Bragg spectroscopy of a strongly interacting Fermi gas, Phys. Rev. Lett., 2008, 101(25): 250403
CrossRef ADS Google scholar
[67]
E. D. Kuhnle, S. Hoinka, P. Dyke, H. Hu, P. Hannaford, and C. J. Vale, Temperature dependence of the universal contact parameter in a unitary Fermi gas, Phys. Rev. Lett., 2011, 106(17): 170402
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1264 KB)

Accesses

Citations

Detail

Sections
Recommended

/