Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows
Feng Chen, Ai-Guo Xu, Guang-Cai Zhang, Yong-Long Wang
Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows
In the paper we extend the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett., 2010, 90: 54003] so that it is suitable also for incompressible flows. To decrease the artificial oscillations, the convection term is discretized by the flux limiter scheme with splitting technique. A new model is validated by some well-known benchmark tests, including Riemann problem and Couette flow, and satisfying agreements are obtained between the simulation results and analytical ones. In order to show the merit of LB model over traditional methods, the non-equilibrium characteristics of system are solved. The simulation results are consistent with the physical analysis.
lattice Boltzmann method / multiple-relaxation-time / flux limiter technique / Prandtl numbers effect / non-equilibrium characteristic
[1] |
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
|
[2] |
R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep., 1992, 222(3): 145
CrossRef
ADS
Google scholar
|
[3] |
A. G. Xu, G. Gonnella, and A. Lamura, Phase-separating binary fluids under oscillatory shear, Phys. Rev. E, 2003, 67(5): 056105
CrossRef
ADS
Google scholar
|
[4] |
A. G. Xu, G. Gonnella, and A. Lamura, Morphologies and flow patterns in quenching of lamellar systems with shear, Phys. Rev. E, 2006, 74(1): 011505
CrossRef
ADS
Google scholar
|
[5] |
A. G. Xu, G. Gonnella, and A. Lamura, Phase separation of incompressible binary fluids with lattice Boltzmann methods, Physica A, 2004, 331(1-2): 10
CrossRef
ADS
Google scholar
|
[6] |
A. G. Xu, G. Gonnella, and A. Lamura, Numerical study of the ordering properties of lamellar phase, Physica A, 2004, 344(3-4): 750
CrossRef
ADS
Google scholar
|
[7] |
A. G. Xu, G. Gonnella, and A. Lamura, Simulations of complex fluids by mixed lattice Boltzmann-finite difference methods, Physica A, 2006, 362(1): 42
CrossRef
ADS
Google scholar
|
[8] |
F. J. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys. Lett., 1989, 9: 345
CrossRef
ADS
Google scholar
|
[9] |
F. J. Higuera and J. Jimenez, Boltzmann approach to lattice gas simulations, Europhys. Lett., 1989, 9: 662
CrossRef
ADS
Google scholar
|
[10] |
D. d’Humieres, Generalized lattice-Boltzmann equations, in: Rarefied Gas Dynamics: Theory and Simulations, edited by B. D. Shizgal and D. P Weaver, Progress in Astronautics and Aeronautics, Vol. 159, Washington: AIAA Press, DC, 1992: 450-458
|
[11] |
P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 2000, 61(6): 6546
CrossRef
ADS
Google scholar
|
[12] |
D. d’Humières, M. Bouzidi, and P. Lallemand, Thirteenvelocity three-dimensional lattice Boltzmann model, Phys. Rev. E, 2001, 63(6): 066702
CrossRef
ADS
Google scholar
|
[13] |
M. E. McCracken and J. Abraham, Multiple-relaxation-time lattice-Boltzmann model for multiphase flow, Phys. Rev. E, 2005, 71(3): 036701
CrossRef
ADS
Google scholar
|
[14] |
K. N. Premnath and J. Abraham, Three-dimensional multirelaxation time (MRT) lattice-Boltzmann models for multiphase flow, J. Comput. Phys., 2007, 224(2): 539
CrossRef
ADS
Google scholar
|
[15] |
H. D. Yu, L. S. Luo, and S. S. Girimaji, LES of turbulent square jet flow using an MRT lattice Boltzmann model, Comput. Fluids, 2006, 35(8-9): 957
CrossRef
ADS
Google scholar
|
[16] |
P. Asinari, Asymptotic analysis of multiple-relaxation-time lattice Boltzmann schemes for mixture modeling, Comput. Math. Appl., 2008, 55(7): 1392
CrossRef
ADS
Google scholar
|
[17] |
I. Rasin, S. Succi, and W. Miller, A multi-relaxation lattice kinetic method for passive scalar diffusion, J. Comput. Phys., 2006, 206(2): 453
CrossRef
ADS
Google scholar
|
[18] |
H. Yoshida and M. Nagaoka, Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation, J. Comput. Phys., 2010, 229(20): 7774
CrossRef
ADS
Google scholar
|
[19] |
Z. H. Chai and T. S. Zhao, Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor, Phys. Rev. E, 2012, 86(1): 016705
CrossRef
ADS
Google scholar
|
[20] |
J. J. Huang, H. B. Huang, C. Shu, Y. T. Chew, and S. L. Wang, Hybrid multiple-relaxation-time lattice-Boltzmann finite-difference method for axisymmetric multiphase flows, J. Phys. A: Math. Theor., 2013, 46(5): 055501
CrossRef
ADS
Google scholar
|
[21] |
P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions, Phys. Rev. E, 2003, 68(3): 036706
CrossRef
ADS
Google scholar
|
[22] |
L. Zheng, B. C. Shi, and Z. L. Guo, Multiple-relaxation-time model for the correct thermohydrodynamic equations, Phys. Rev. E, 2008, 78(2): 026705
CrossRef
ADS
Google scholar
|
[23] |
A. Mezrhab, M. A. Moussaouia, M. Jami, H. Naji, and M. Bouzidi, Double MRT thermal lattice Boltzmann method for simulating convective flows, Phys. Lett. A, 2010, 374(34): 3499
CrossRef
ADS
Google scholar
|
[24] |
F. Chen, A. G. Xu, G. C. Zhang, Y. J. Li, and S. Succi, Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, Europhys. Lett., 2010, 90(5): 54003
CrossRef
ADS
Google scholar
|
[25] |
A. Cristea and V. Sofonea, Two component lattice Boltzmann model with flux limiter techniques, Proceedings of the Romanian Academy, Series A, 2003, 4: 59
|
[26] |
A. Cristea and V. Sofonea, Two component lattice Boltzmann model with flux limiters, Central Eur. J. Phys., 2004, 2: 382
CrossRef
ADS
Google scholar
|
[27] |
V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Finitedifference lattice Boltzmann model with flux limiters for liquid-vapor systems, Phys. Rev. E, 2004, 70(4): 046702
CrossRef
ADS
Google scholar
|
[28] |
F. Chen, A. G. Xu, G. C. Zhang, and Y. J. Li, Flux limiter lattice Boltzmann for compressible flows, Commun. Theor. Phys., 2011, 56(2): 333
CrossRef
ADS
Google scholar
|
[29] |
A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys., 2012, 7(5): 582
CrossRef
ADS
Google scholar
|
[30] |
B. Yan, A. G. Xu, G. C. Zhang, Y. J. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys., 2013, 8(1): 94
CrossRef
ADS
Google scholar
|
[31] |
C. Lin, A. G. Xu, G. Zhang, Y. Li, and S. Succi, Polar coordinate lattice Boltzmann modeling of compressible flows, arXiv: 1302.7104v1, 2013
|
[32] |
T. Kataoka and M. Tsutahara, Lattice Boltzmann model for the compressible Navier–Stokes equations with flexible specific-heat ratio, Phys. Rev. E, 2004, 69(3): 035701(R)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |