Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows

Feng Chen , Ai-Guo Xu , Guang-Cai Zhang , Yong-Long Wang

Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 246 -254.

PDF (339KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 246 -254. DOI: 10.1007/s11467-013-0368-y

Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows

Author information +
History +
PDF (339KB)

Abstract

In the paper we extend the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett., 2010, 90: 54003] so that it is suitable also for incompressible flows. To decrease the artificial oscillations, the convection term is discretized by the flux limiter scheme with splitting technique. A new model is validated by some well-known benchmark tests, including Riemann problem and Couette flow, and satisfying agreements are obtained between the simulation results and analytical ones. In order to show the merit of LB model over traditional methods, the non-equilibrium characteristics of system are solved. The simulation results are consistent with the physical analysis.

Graphical abstract

Keywords

lattice Boltzmann method / multiple-relaxation-time / flux limiter technique / Prandtl numbers effect / non-equilibrium characteristic

Cite this article

Download citation ▾
Feng Chen, Ai-Guo Xu, Guang-Cai Zhang, Yong-Long Wang. Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows. Front. Phys., 2014, 9(2): 246-254 DOI:10.1007/s11467-013-0368-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001

[2]

R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep., 1992, 222(3): 145

[3]

A. G. Xu, G. Gonnella, and A. Lamura, Phase-separating binary fluids under oscillatory shear, Phys. Rev. E, 2003, 67(5): 056105

[4]

A. G. Xu, G. Gonnella, and A. Lamura, Morphologies and flow patterns in quenching of lamellar systems with shear, Phys. Rev. E, 2006, 74(1): 011505

[5]

A. G. Xu, G. Gonnella, and A. Lamura, Phase separation of incompressible binary fluids with lattice Boltzmann methods, Physica A, 2004, 331(1-2): 10

[6]

A. G. Xu, G. Gonnella, and A. Lamura, Numerical study of the ordering properties of lamellar phase, Physica A, 2004, 344(3-4): 750

[7]

A. G. Xu, G. Gonnella, and A. Lamura, Simulations of complex fluids by mixed lattice Boltzmann-finite difference methods, Physica A, 2006, 362(1): 42

[8]

F. J. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys. Lett., 1989, 9: 345

[9]

F. J. Higuera and J. Jimenez, Boltzmann approach to lattice gas simulations, Europhys. Lett., 1989, 9: 662

[10]

D. d’Humieres, Generalized lattice-Boltzmann equations, in: Rarefied Gas Dynamics: Theory and Simulations, edited by B. D. Shizgal and D. P Weaver, Progress in Astronautics and Aeronautics, Vol. 159, Washington: AIAA Press, DC, 1992: 450-458

[11]

P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 2000, 61(6): 6546

[12]

D. d’Humières, M. Bouzidi, and P. Lallemand, Thirteenvelocity three-dimensional lattice Boltzmann model, Phys. Rev. E, 2001, 63(6): 066702

[13]

M. E. McCracken and J. Abraham, Multiple-relaxation-time lattice-Boltzmann model for multiphase flow, Phys. Rev. E, 2005, 71(3): 036701

[14]

K. N. Premnath and J. Abraham, Three-dimensional multirelaxation time (MRT) lattice-Boltzmann models for multiphase flow, J. Comput. Phys., 2007, 224(2): 539

[15]

H. D. Yu, L. S. Luo, and S. S. Girimaji, LES of turbulent square jet flow using an MRT lattice Boltzmann model, Comput. Fluids, 2006, 35(8-9): 957

[16]

P. Asinari, Asymptotic analysis of multiple-relaxation-time lattice Boltzmann schemes for mixture modeling, Comput. Math. Appl., 2008, 55(7): 1392

[17]

I. Rasin, S. Succi, and W. Miller, A multi-relaxation lattice kinetic method for passive scalar diffusion, J. Comput. Phys., 2006, 206(2): 453

[18]

H. Yoshida and M. Nagaoka, Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation, J. Comput. Phys., 2010, 229(20): 7774

[19]

Z. H. Chai and T. S. Zhao, Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor, Phys. Rev. E, 2012, 86(1): 016705

[20]

J. J. Huang, H. B. Huang, C. Shu, Y. T. Chew, and S. L. Wang, Hybrid multiple-relaxation-time lattice-Boltzmann finite-difference method for axisymmetric multiphase flows, J. Phys. A: Math. Theor., 2013, 46(5): 055501

[21]

P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions, Phys. Rev. E, 2003, 68(3): 036706

[22]

L. Zheng, B. C. Shi, and Z. L. Guo, Multiple-relaxation-time model for the correct thermohydrodynamic equations, Phys. Rev. E, 2008, 78(2): 026705

[23]

A. Mezrhab, M. A. Moussaouia, M. Jami, H. Naji, and M. Bouzidi, Double MRT thermal lattice Boltzmann method for simulating convective flows, Phys. Lett. A, 2010, 374(34): 3499

[24]

F. Chen, A. G. Xu, G. C. Zhang, Y. J. Li, and S. Succi, Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, Europhys. Lett., 2010, 90(5): 54003

[25]

A. Cristea and V. Sofonea, Two component lattice Boltzmann model with flux limiter techniques, Proceedings of the Romanian Academy, Series A, 2003, 4: 59

[26]

A. Cristea and V. Sofonea, Two component lattice Boltzmann model with flux limiters, Central Eur. J. Phys., 2004, 2: 382

[27]

V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Finitedifference lattice Boltzmann model with flux limiters for liquid-vapor systems, Phys. Rev. E, 2004, 70(4): 046702

[28]

F. Chen, A. G. Xu, G. C. Zhang, and Y. J. Li, Flux limiter lattice Boltzmann for compressible flows, Commun. Theor. Phys., 2011, 56(2): 333

[29]

A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys., 2012, 7(5): 582

[30]

B. Yan, A. G. Xu, G. C. Zhang, Y. J. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys., 2013, 8(1): 94

[31]

C. Lin, A. G. Xu, G. Zhang, Y. Li, and S. Succi, Polar coordinate lattice Boltzmann modeling of compressible flows, arXiv: 1302.7104v1, 2013

[32]

T. Kataoka and M. Tsutahara, Lattice Boltzmann model for the compressible Navier–Stokes equations with flexible specific-heat ratio, Phys. Rev. E, 2004, 69(3): 035701(R)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (339KB)

1217

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/