Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows

Feng Chen, Ai-Guo Xu, Guang-Cai Zhang, Yong-Long Wang

PDF(339 KB)
PDF(339 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 246-254. DOI: 10.1007/s11467-013-0368-y

Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows

Author information +
History +

Abstract

In the paper we extend the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett., 2010, 90: 54003] so that it is suitable also for incompressible flows. To decrease the artificial oscillations, the convection term is discretized by the flux limiter scheme with splitting technique. A new model is validated by some well-known benchmark tests, including Riemann problem and Couette flow, and satisfying agreements are obtained between the simulation results and analytical ones. In order to show the merit of LB model over traditional methods, the non-equilibrium characteristics of system are solved. The simulation results are consistent with the physical analysis.

Graphical abstract

Keywords

lattice Boltzmann method / multiple-relaxation-time / flux limiter technique / Prandtl numbers effect / non-equilibrium characteristic

Cite this article

Download citation ▾
Feng Chen, Ai-Guo Xu, Guang-Cai Zhang, Yong-Long Wang. Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows. Front. Phys., 2014, 9(2): 246‒254 https://doi.org/10.1007/s11467-013-0368-y

References

[1]
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
[2]
R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep., 1992, 222(3): 145
CrossRef ADS Google scholar
[3]
A. G. Xu, G. Gonnella, and A. Lamura, Phase-separating binary fluids under oscillatory shear, Phys. Rev. E, 2003, 67(5): 056105
CrossRef ADS Google scholar
[4]
A. G. Xu, G. Gonnella, and A. Lamura, Morphologies and flow patterns in quenching of lamellar systems with shear, Phys. Rev. E, 2006, 74(1): 011505
CrossRef ADS Google scholar
[5]
A. G. Xu, G. Gonnella, and A. Lamura, Phase separation of incompressible binary fluids with lattice Boltzmann methods, Physica A, 2004, 331(1-2): 10
CrossRef ADS Google scholar
[6]
A. G. Xu, G. Gonnella, and A. Lamura, Numerical study of the ordering properties of lamellar phase, Physica A, 2004, 344(3-4): 750
CrossRef ADS Google scholar
[7]
A. G. Xu, G. Gonnella, and A. Lamura, Simulations of complex fluids by mixed lattice Boltzmann-finite difference methods, Physica A, 2006, 362(1): 42
CrossRef ADS Google scholar
[8]
F. J. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys. Lett., 1989, 9: 345
CrossRef ADS Google scholar
[9]
F. J. Higuera and J. Jimenez, Boltzmann approach to lattice gas simulations, Europhys. Lett., 1989, 9: 662
CrossRef ADS Google scholar
[10]
D. d’Humieres, Generalized lattice-Boltzmann equations, in: Rarefied Gas Dynamics: Theory and Simulations, edited by B. D. Shizgal and D. P Weaver, Progress in Astronautics and Aeronautics, Vol. 159, Washington: AIAA Press, DC, 1992: 450-458
[11]
P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 2000, 61(6): 6546
CrossRef ADS Google scholar
[12]
D. d’Humières, M. Bouzidi, and P. Lallemand, Thirteenvelocity three-dimensional lattice Boltzmann model, Phys. Rev. E, 2001, 63(6): 066702
CrossRef ADS Google scholar
[13]
M. E. McCracken and J. Abraham, Multiple-relaxation-time lattice-Boltzmann model for multiphase flow, Phys. Rev. E, 2005, 71(3): 036701
CrossRef ADS Google scholar
[14]
K. N. Premnath and J. Abraham, Three-dimensional multirelaxation time (MRT) lattice-Boltzmann models for multiphase flow, J. Comput. Phys., 2007, 224(2): 539
CrossRef ADS Google scholar
[15]
H. D. Yu, L. S. Luo, and S. S. Girimaji, LES of turbulent square jet flow using an MRT lattice Boltzmann model, Comput. Fluids, 2006, 35(8-9): 957
CrossRef ADS Google scholar
[16]
P. Asinari, Asymptotic analysis of multiple-relaxation-time lattice Boltzmann schemes for mixture modeling, Comput. Math. Appl., 2008, 55(7): 1392
CrossRef ADS Google scholar
[17]
I. Rasin, S. Succi, and W. Miller, A multi-relaxation lattice kinetic method for passive scalar diffusion, J. Comput. Phys., 2006, 206(2): 453
CrossRef ADS Google scholar
[18]
H. Yoshida and M. Nagaoka, Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation, J. Comput. Phys., 2010, 229(20): 7774
CrossRef ADS Google scholar
[19]
Z. H. Chai and T. S. Zhao, Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor, Phys. Rev. E, 2012, 86(1): 016705
CrossRef ADS Google scholar
[20]
J. J. Huang, H. B. Huang, C. Shu, Y. T. Chew, and S. L. Wang, Hybrid multiple-relaxation-time lattice-Boltzmann finite-difference method for axisymmetric multiphase flows, J. Phys. A: Math. Theor., 2013, 46(5): 055501
CrossRef ADS Google scholar
[21]
P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions, Phys. Rev. E, 2003, 68(3): 036706
CrossRef ADS Google scholar
[22]
L. Zheng, B. C. Shi, and Z. L. Guo, Multiple-relaxation-time model for the correct thermohydrodynamic equations, Phys. Rev. E, 2008, 78(2): 026705
CrossRef ADS Google scholar
[23]
A. Mezrhab, M. A. Moussaouia, M. Jami, H. Naji, and M. Bouzidi, Double MRT thermal lattice Boltzmann method for simulating convective flows, Phys. Lett. A, 2010, 374(34): 3499
CrossRef ADS Google scholar
[24]
F. Chen, A. G. Xu, G. C. Zhang, Y. J. Li, and S. Succi, Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, Europhys. Lett., 2010, 90(5): 54003
CrossRef ADS Google scholar
[25]
A. Cristea and V. Sofonea, Two component lattice Boltzmann model with flux limiter techniques, Proceedings of the Romanian Academy, Series A, 2003, 4: 59
[26]
A. Cristea and V. Sofonea, Two component lattice Boltzmann model with flux limiters, Central Eur. J. Phys., 2004, 2: 382
CrossRef ADS Google scholar
[27]
V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Finitedifference lattice Boltzmann model with flux limiters for liquid-vapor systems, Phys. Rev. E, 2004, 70(4): 046702
CrossRef ADS Google scholar
[28]
F. Chen, A. G. Xu, G. C. Zhang, and Y. J. Li, Flux limiter lattice Boltzmann for compressible flows, Commun. Theor. Phys., 2011, 56(2): 333
CrossRef ADS Google scholar
[29]
A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys., 2012, 7(5): 582
CrossRef ADS Google scholar
[30]
B. Yan, A. G. Xu, G. C. Zhang, Y. J. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys., 2013, 8(1): 94
CrossRef ADS Google scholar
[31]
C. Lin, A. G. Xu, G. Zhang, Y. Li, and S. Succi, Polar coordinate lattice Boltzmann modeling of compressible flows, arXiv: 1302.7104v1, 2013
[32]
T. Kataoka and M. Tsutahara, Lattice Boltzmann model for the compressible Navier–Stokes equations with flexible specific-heat ratio, Phys. Rev. E, 2004, 69(3): 035701(R)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(339 KB)

Accesses

Citations

Detail

Sections
Recommended

/