Progress in physical properties of Chinese stock markets

Yuan Liang梁源, Guang Yang杨光, Ji-Ping Huang黄吉平

PDF(1010 KB)
PDF(1010 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (4) : 438-450. DOI: 10.1007/s11467-013-0366-0
REVIEW ARTICLE
REVIEW ARTICLE

Progress in physical properties of Chinese stock markets

Author information +
History +

Abstract

In the past two decades, statistical physics was brought into the field of finance, applying new methods and concepts to financial time series and developing a new interdiscipline “econophysics”. In this review, we introduce several commonly used methods for stock time series in econophysics including distribution functions, correlation functions, detrended fluctuation analysis method, detrended moving average method, and multifractal analysis. Then based on these methods, we review some statistical properties of Chinese stock markets including scaling behavior, long-term correlations, cross-correlations, leverage effects, antileverage effects, and multifractality. Last, based on an agent-based model, we develop a new option pricing model — financial market model that shows a good agreement with the prices using real Shanghai Index data. This review is helpful for people to understand and research statistical physics of financial markets.

Keywords

econophysics / Chinese stock market / statistical method / statistical physics

Cite this article

Download citation ▾
Yuan Liang梁源, Guang Yang杨光, Ji-Ping Huang黄吉平. Progress in physical properties of Chinese stock markets. Front. Phys., 2013, 8(4): 438‒450 https://doi.org/10.1007/s11467-013-0366-0

References

[1]
J. D. Farmer, Physicists attempt to scale the ivory towers of finance, Comput. Sci. Eng., 1999, 1(6): 26
CrossRef ADS Google scholar
[2]
B. Mandelbrot, The variation of certain speculative prices, J. Buss., 1963, 36(4): 394
CrossRef ADS Google scholar
[3]
E. Fama, The behavior of stock-market prices, J. Buss., 1965, 38(1): 34
CrossRef ADS Google scholar
[4]
W. X. Zhou, A Guide to Econophysics, Shanghai: Shanghai University of Finance and Economics Press, 2007 (in Chinese)
[5]
R. N. Mantegna and H. E. Stanley, Scaling behaviour in the dynamics of an economic index, Nature, 1995, 376(6535): 46
CrossRef ADS Google scholar
[6]
V. Plerou, P. Gopikrishnan, L. N. Amaral, M. Meyer, and H. E. Stanley, Scaling of the distribution of price fluctuations of individual companies, Phys. Rev. E, 1999, 60(6): 6519
CrossRef ADS Pubmed Google scholar
[7]
P. Gopikrishnan, V. Plerou, L. N. Amaral, M. Meyer, and H. E. Stanley, Scaling of the distribution of fluctuations of financial market indices, Phys. Rev. E, 1999, 60(5): 5305
CrossRef ADS Pubmed Google scholar
[8]
J. P. Bouchaud and M. Potters, Theory of Financial Risk, Cambridge: Cambridge University Press, 2000
Pubmed
[9]
K. Matia, L. A. N. Amaral, S. P. Goodwin, and H. E. Stanley, Different scaling behaviors of commodity spot and future prices, Phys. Rev. E, 2002, 66(4): 045103
CrossRef ADS Pubmed Google scholar
[10]
T. Qiu, B. Zheng, F. Ren, and S. Trimper, Statistical properties of German Dax and Chinese indices, Physica A, 2007, 378(2): 387
CrossRef ADS Google scholar
[11]
C. Yan, J. W. Zhang, Y. Zhang, and Y. N. Tang, Power-law properties of Chinese stock market, Physica A, 2005, 353: 425
CrossRef ADS Google scholar
[12]
J. W. Zhang, Y. Zhang, and H. Kleinert, Power tails of index distributions in Chinese stock market, Physica A, 2007, 377(1): 166
CrossRef ADS Google scholar
[13]
K. Yamasaki, L. Muchnik, S. Havlin, A. Bunde, and H. E. Stanley, Scaling and memory in volatility return intervals in financial markets, Proc. Natl. Acad. Sci. USA, 2005, 102(26): 9424
CrossRef ADS Pubmed Google scholar
[14]
C. P. Zhu, X. T. Liu, and Z. M. Gu, Flat-head powerlaw, size-independent clustering and scaling of coevolutionary scale-free networks, Front. Phys., 2011, 6(3): 337
CrossRef ADS Google scholar
[15]
J. L. Ma and F. T. Ma, Solitary wave solutions of nonlinear financial markets: Data-modeling-conceptpracticing, Front. Phys. China, 2007, 2(3): 368
CrossRef ADS Google scholar
[16]
W. Wan and J. W. Zhang, Long-term memory of the returns in the Chinese stock indices, Front. Phys. China, 2008, 3(4): 489
CrossRef ADS Google scholar
[17]
W. C. Zhou, H. C. Xu, Z. Y. Cai, J. R. Wei, X. Y. Zhu, W. Wang, L. Zhao, and J. P. Huang, Peculiar statistical properties of Chinese stock indices in bull and bear market phases, Physica A, 2009, 388(6): 891
CrossRef ADS Google scholar
[18]
G. F. Gu, W. Chen, and W. X. Zhou, Empirical distributions of Chinese stock returns at different microscopic timescales, Physica A, 2008, 387(2–3): 495
CrossRef ADS Google scholar
[19]
M. Y. Bai and H. B. Zhu, Power law and multiscaling properties of the Chinese stock market, Physica A, 2010, 389(9): 1883
CrossRef ADS Google scholar
[20]
G. H. Mu, W. Chen, J. Kertesz, and W. X. Zhou, Preferred numbers and the distribution of trade sizes and trading volumes in the Chinese stock market, Eur. Phys. J. B, 2009, 68(1): 145
CrossRef ADS Google scholar
[21]
J. Shen and B. Zheng, Cross-correlation in financial dynamics, Europhys. Lett., 2009, 86(4): 48005
CrossRef ADS Google scholar
[22]
T. Qiu, B. Zheng, F. Ren, and S. Trimper, Return-volatility correlation in financial dynamics, Phys. Rev. E, 2006, 73(6): 065103 (R)
CrossRef ADS Pubmed Google scholar
[23]
W. X. Zhou, The components of empirical multifractality in financial returns, Europhys. Lett., 2009, 88(2): 28004
CrossRef ADS Google scholar
[24]
Y. P. Ruan and W. X. Zhou, Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant, Physica A, 2011, 390(9): 1646
CrossRef ADS Google scholar
[25]
G. H. Mu, W. X. Zhou, W. Chen, and J. Kertesz, Longterm correlations and multifractality in trading volume for Chinese stocks, Physics Procedia, 2010, 3(5): 1631
CrossRef ADS Google scholar
[26]
G. F. Gu and W. X. Zhou, Statistical properties of daily ensemble variables in the Chinese stock markets, Physica A, 2007, 383(2): 497
CrossRef ADS Google scholar
[27]
T. Qiu, G. Chen, L. X. Zhong, and X. W. Lei, Memory effect and multifractality of cross-correlations in financial markets, Physica A, 2011, 390(5): 828
CrossRef ADS Google scholar
[28]
G. X. Du and X. X. Ning, Multifractal properties of Chinese stock market in Shanghai, Physica A, 2008, 387(1): 261
CrossRef ADS Google scholar
[29]
Y. Yuan, X. T. Zhuang, and Z. Y. Liu, Price-volume multifractal analysis and its application in Chinese stock markets, Physica A, 2012, 391(12): 3484
CrossRef ADS Google scholar
[30]
S. P. Chen and L. Y. He, Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets, Physica A, 2010, 389(7): 1434
[31]
F. Ren, G. F. Gu, and W. X. Zhou, Scaling and memory in the return intervals of realized volatility, Physica A, 2009, 388(22): 4787
[32]
F. Ren and W. X. Zhou, Multiscaling behavior in the volatility return intervals of Chinese indices, Europhys. Lett., 2008, 84(6): 68001
[33]
F. Ren, L. Guo, and W. X. Zhou, Statistical properties of volatility return intervals of Chinese stocks, Physica A, 2009, 388(6): 881
[34]
T. Qiu, L. X. Zhong, G. Chen, and X. R. Wu, Statistical properties of trading volume of Chinese stocks, Physica A, 2009, 388(12): 2427
[35]
X. Q. Sun, X. Q. Cheng, H. W. Shen, and Z. Y. Wang, Statistical properties of trading activity in Chinese stock market, Physics Procedia, 2010, 3(5): 1699
[36]
Z. Q. Jiang, W. Chen, and W. X. Zhou, Scaling in the distribution of intertrade durations of Chinese stocks, Physica A, 2008, 387(23): 5818
[37]
V. Plerou, P. Gopikrishnan, B. Rosenow, L. N. Amaral, and H. E. Stanley, Universal and nonuniversal properties of cross correlations in financial time series, Phys. Rev. Lett., 1999, 83(7): 1471
[38]
P. Gopikrishnan, B. Rosenow, V. Plerou, and H. E. Stanley, Quantifying and interpreting collective behavior in financial markets, Phys. Rev. E, 2001, 64(3): 035106
[39]
V. Plerou, P. Gopikrishnan, B. Rosenow, L. N. Amaral, T. Guhr, and H. E. Stanley, Random matrix approach to cross correlations in financial data, Phys. Rev. E, 2002, 65(6): 066126
[40]
K. G. D. R. Nilantha, Ranasinghe, and P. K. C. Malmini, Eigenvalue density of cross-correlations in Sri Lankan financial market, Physica A, 2007, 378(2): 345
[41]
E. Alessio, A. Carbone, G. Castelli, and V. Frappietro, Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B, 2002, 27(2): 197
[42]
S. Arianos and A. Carbone, Detrending moving average algorithm: A closed-form approximation of the scaling law, Physica A, 2007, 382(1): 9
[43]
A. Carbone, Detrending moving average algorithm: A brief review, in: Proceeding of Science and Technology for Humanity, IEEE Toronto International Conference, 2009: 691
[44]
Y. H. Shao, G. F. Gu, Z. Q. Jiang, W. X. Zhou, and D. Sornette, Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series, Scientific Reports, 2012, 2: 835
CrossRef ADS Pubmed Google scholar
[45]
G. F. Gu and W. X. Zhou, Detrending moving average algorithm for multifractals, Phys. Rev. E, 2010, 82(1): 011136
CrossRef ADS Pubmed Google scholar
[46]
B. Podobnik and H. E. Stanley, Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series, Phys. Rev. Lett., 2008, 100(8): 084102
CrossRef ADS Pubmed Google scholar
[47]
S. Arianos and A. Carbone, Cross-correlation of long-range correlated series, Journal of Statistical Mechanism – Theory and Experiment, 2009: P03037
[48]
W. X. Zhou, Multifractal detrended cross-correlation analysis for two nonstationary signals, Phys. Rev. E, 2008, 77(6): 066211
CrossRef ADS Pubmed Google scholar
[49]
Z. Q. Jiang and W. X. Zhou, Multifractal detrending moving average cross-correlation analysis, Phys. Rev. E, 2011, 84(1): 016106
CrossRef ADS Pubmed Google scholar
[50]
L. Bachelier, Theorie de la, Paris: Gauthier-Villars, 1900
[51]
R. N. Mantegna and H. E. Stanley, Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge: Cambridge University Press, 1999
CrossRef ADS Google scholar
[52]
J. P. Bouchaud and D. Sornette, The Black-Scholes option pricing problem in mathematical finance: Generalization and extensions for a large class of stochastic processes, J. Phys. I France, 1994, 4: 863
[53]
G. H. Mu and W. X. Zhou, Tests of nonuniversality of the stock return distributions in an emerging market, Phys. Rev. E, 2010, 82(6): 066103
CrossRef ADS Pubmed Google scholar
[54]
C. K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos, 1995, 5(1): 82
CrossRef ADS Pubmed Google scholar
[55]
C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, Mosaic organization of DNA nucleotides, Phys. Rev. E, 1994, 49(2): 1685
CrossRef ADS Pubmed Google scholar
[56]
K. Matia, Y. Ashkenazy, and H. E. Stanley, Multifractal properties of price fluctuations of stocks and commodities, Europhys. Lett., 2003, 61(3): 422
CrossRef ADS Google scholar
[57]
S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, and Y. Dodge, Turbulent cascades in foreign exchange markets, Nature, 1996, 381(6585): 767
CrossRef ADS Google scholar
[58]
R. N. Mantegna and H. E. Stanley, Turbulence and financial markets, Nature, 1996, 383(6601): 587
CrossRef ADS Google scholar
[59]
B. B. Mandelbrot, A multifractal walk down Wall Street, Sci. Am., 1999, 280(2): 70
CrossRef ADS Google scholar
[60]
N. F. Johnson, P. Jefferies, and P. M. Hui, Financial Market Complexity, Oxford: Oxford University Press, s
CrossRef ADS Google scholar
[61]
J. C. Hull, Options, Futures, and Other Derivatives, 7th Ed., New Jersey: Prentice Education, Inc., 2009
[62]
Z. Bodie, A. Kane, and A. J. Marcus, Investments, 8th Ed., US: McGraw-Hill Education, 2009
[63]
F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 1973, 81(3): 637
CrossRef ADS Google scholar
[64]
R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manage. Sci., 1973, 4(1): 141
CrossRef ADS Google scholar
[65]
C. H. Yeung, K. M.Wong, and Y. C. Zhang, Models of financial markets with extensive participation incentives, Phys. Rev. E, 2008, 77(2): 026107
CrossRef ADS Pubmed Google scholar
[66]
W. Wang, Y. Chen, and J. P. Huang, Heterogeneous preferences, decision-making capacity and phase transitions in a complex adaptive system, Proc. Natl. Acad. Sci. USA, 2009, 106(21): 8423
CrossRef ADS Pubmed Google scholar
[67]
L. Zhao, G. Yang, W. Wang, Y. Chen, J. P. Huang, H. Ohashi, and H. E. Stanley, Herd behavior in a complex adaptive system, Proc. Natl. Acad. Sci. USA, 2011, 108(37): 15058
CrossRef ADS Pubmed Google scholar
[68]
Y. Liang, K. N. An, G. Yang, and J. P. Huang, Contrarian behavior in a complex adaptive system, Phys. Rev. E, 2013, 87(1): 012809
CrossRef ADS Pubmed Google scholar
[69]
K. Y. Song, K. N. An, G. Yang, and J. P. Huang, Riskreturn relationship in a complex adaptive system, PLoS ONE, 2012, 7(3): e33588
CrossRef ADS Pubmed Google scholar
[70]
W. Z. Zheng, Y. Liang, and J. P. Huang, Equilibrium state and non-equilibrium steady state in an isolated human system, Front. Phys., 2013 (in press)
CrossRef ADS Google scholar
[71]
Y. Liang and J. P. Huang, Robustness of critical points in a complex adaptive system: Effects of hedge behavior, Front. Phys., 2013
[72]
D. Challet, A. Chessa, M. Marsili, and Y. C. Zhang, From minority games to real markets, Quant. Finance, 2001, 1(1): 168
CrossRef ADS Google scholar
[73]
R. Cont and J. P. Bouchaud, Herd behavior and aggregate fluctuations in financial markets, Macroeconomic Dynamics, 2000, 4(02): 170
CrossRef ADS Google scholar
[74]
C. H. Hommes, Modeling the stylized facts in finance through simple nonlinear adaptive systems, Proc. Natl. Acad. Sci. USA, 2002, 99(90003): 7221
CrossRef ADS Pubmed Google scholar
[75]
V. Al., M. Cristelli, L. Pietronero, and A. Zaccaria, Minimal agent based model for financial markets I, Eur. Phys. J. B, 2009, 67(3): 385
CrossRef ADS Google scholar
[76]
T. Lux and M. Marchesi, Scaling and criticality in a stochastic multi-agent model of a financial market, Nature, 1999, 397(6719): 498
CrossRef ADS Google scholar
[77]
S. Thurner, J. D. Farmer, and J. Geanakoplos, Leverage causes fat tails and clustered volatility, Quant. Finance, 2012, 12(5): 695
CrossRef ADS Google scholar
[78]
J. Wiesinger, D. Sornette, and J. Satinover, Reverse engineering financial markets with majority and minority games using genetic algorithms, Comput. Econ., 2013, 41(4): 475
CrossRef ADS Google scholar
[79]
S. Mike and J. D. Farmer, An empirical behavioral model of liquidity and volatility, J. Econ. Dyn. Control, 2008, 32(1): 200
CrossRef ADS Google scholar
[80]
G. F. Gu and W. X. Zhou, Emergence of long memory in stock volatility from a modified Mike-Farmer model, Europhys. Lett., 2009, 86(4): 48002
CrossRef ADS Google scholar
[81]
J. R. Wei and J. P. Huang, An exotic long-term pattern in stock price dynamics, PLoS ONE, 2012, 7(12): e51666
CrossRef ADS Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1010 KB)

Accesses

Citations

Detail

Sections
Recommended

/