Single photon sources with single semiconductor quantum dots

Guang-Cun Shan , Zhang-Qi Yin , Chan Hung Shek , Wei Huang

Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 170 -193.

PDF (777KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 170 -193. DOI: 10.1007/s11467-013-0360-6
REVIEW ARTICLE

Single photon sources with single semiconductor quantum dots

Author information +
History +
PDF (777KB)

Abstract

In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

Graphical abstract

Keywords

single-photon source / quantum dot (QD) / quantum optics / photon correlation

Cite this article

Download citation ▾
Guang-Cun Shan, Zhang-Qi Yin, Chan Hung Shek, Wei Huang. Single photon sources with single semiconductor quantum dots. Front. Phys., 2014, 9(2): 170-193 DOI:10.1007/s11467-013-0360-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. M. Gérard and B. Gayral, InAs quantum dots: Artificial atoms for solid-state cavity-quantum electrodynamics, Physica E, 2001, 9(1): 131

[2]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, Efficient source of single photons: A single quantum dot in a micropost microcavity, Phys. Rev. Lett., 2002, 89(23): 233602

[3]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature, 2004, 432(7014): 200

[4]

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity, Phys. Rev. Lett., 2005, 95(6): 067401

[5]

M. Pelton and Y. Yamamoto, Ultralow threshold laser using a single quantum dot and a microsphere cavity, Phys. Rev. A, 1999, 59(3): 2418

[6]

E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature, 2001, 409(6816): 46

[7]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys., 2002, 74(1): 145

[8]

N. Gisin and R. Thew, Quantum communication, Nat. Photonics, 2007, 1(3): 165

[9]

B. Lounis and M. Orrit, Single-photon sources, Rep. Prog. Phys., 2005, 68(5): 1129

[10]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play” systems for quantum cryp-tography, Appl. Phys. Lett., 1997, 70(7): 793

[11]

G. Brassard, N. Lutkenhaus, T. Mor, and B. C. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett., 2000, 85(6): 1330

[12]

A. Kuhn, M. Hennrich, and G. Rempe, Deterministic singlephoton source for distributed quantum networking, Phys. Rev. Lett., 2002, 89(6): 067901

[13]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, Continuous generation of single photons with controlled waveform in an ion-trap cavity system, Nature, 2004, 431(7012): 1075

[14]

B. Lounis and W. E. Moerner, Single photon on demand from s single molecule at room temperature, Nature, 2000, 407(6803): 491

[15]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Stable solid-state source of single photons, Phys. Rev. Lett., 2000, 85(2): 290

[16]

Y. M. He, Y. He, Y. J. Wei, D. Wu, M. Atature, C. Schneider, S. Hofling, M. Kamp, C. Y. Lu, and J. W. Pan, Ondemand semiconductor single-photon source with near-unity indistinguishability, Nat. Nanotechnol., 2013, 8(3): 213

[17]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, Deterministic coupling of single quantum dots to single nanocavity modes, Science, 2005, 308(5725): 1158

[18]

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission, Phys. Rev. Lett., 2004, 93(10): 107403

[19]

J. Hu, L. S. Li, W. Yang, L. Manna, L. W. Wang, and A. P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods, Science, 2001, 292(5524): 2060

[20]

L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals, Nat. Mater., 2003, 2(6): 382

[21]

G. Shan, S. Bao, C. H. Shek, and W. Huang, Theoretical study of fluorescence resonant energy transfer dynamics in individual semiconductor nanocrystal–DNA–dye conjugates, J. Lumin., 2012, 132(6): 1472

[22]

I. N. Stranski and L. Von Krastanow, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, Akademie der Wissenschaften und der Literatur in Mainz, 1939, 146: 797

[23]

G. C. Shan and S. Bao, Theoretical study of a quantum dot microcavity laser, Proc. SPIE, 2007, 6279(1): 627925

[24]

A. Salhi, G. Rain, L. Fortunato, V. Tasco, G. Visimberga, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Trampert, M. De Vittorio, and A. Passaseo, Enhanced performances of quantum dot lasers operating at 1.3 μm, IEEE J. Sel. Top. Quant., 2008, 14(4): 1188

[25]

G. C. Shan, M. J. Hu, C. H. Shek, and W. Huang, Verticalexternal-cavity surface-emitting lasers and quantum dot lasers, Front. Optoelectron., 2012, 5(2): 157

[26]

T. Akiyama, M. Sugawara, and Y. Arakawa, Quantum-dot semiconductor optical amplifiers, Proc. IEEE, 2007, 95(9): 1757

[27]

S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamoto, and Y. Arakawa, A gallium nitride single-photon source operating at 200 K, Nat. Mater., 2006, 5(11): 887

[28]

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, Quantum correlation among photons from a single quantum dot at room temperature, Nature, 2000, 406(6799): 968

[29]

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Perez-Willard, A. Leitenstorfer, and R. Bratschitsch, Colloidal quantum dots in all-dielectric high-Qpillar microcavities, Nano Lett., 2007, 7(9): 2897

[30]

T. Takagahara, Theory of exciton dephasing in semiconductor quantum dots, Phys. Rev. B, 1999, 60(19): 2638

[31]

C. Förstner, C. Weber, J. Danckwerts, and A. Knorr, Phonon-assisted damping of Rabi oscillations insemiconductor quantum dots, Phys. Rev. Lett., 2003, 91(12): 127401

[32]

E. M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev., 1946, 69(11): 681

[33]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities, Appl. Phys. Lett., 2001, 79(18): 2865

[34]

C. Santori, D. Fattal, and Y. Yamamoto, Single-Photon Devices and Applications, Weinheim: Wiley-VCH, 2010

[35]

M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997

[36]

R. Loudon, The Quantum Theory of Light, 3rd Ed., Oxford: Oxford Science, 2000

[37]

M. Scholz, T. Aichele, and O. Benson, Single-Photon Generation from Single Quantum Dots, Semiconductor Nanostructures (in Series of NanoScience and Technology), 2008: 329-349

[38]

A. J. Berglund, A. C. Doherty, and H. Mabuchi, Photon statistics and dynamics of fluorescence resonance energy transfer, Phys. Rev. Lett., 2002, 89(6): 068101

[39]

A. Qualtieri, G. Morello, P. Spinicelli, M. T. Todaro, T. Stomeo, L. Martiradonna, M. De Giornia, X. Quelinc, S. Builc, A. Bramati, J. P. Hermier, R. Cingolani, and M. De Vittorio, Nonclassical emission from single colloidal nanocrystals in a microcavity: A route towards room temperature single photon sources, New J. Phys., 2009, 11(3): 033025

[40]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, A quantum dot single-photon turnstile device, Science, 2000, 290(5500): 2282

[41]

D. V. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J. M. Lupton, A. L. Rogach, O. Benson, J. Feldmann, and H. Weller, Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality, Nano Lett., 2003, 3(12): 1677

[42]

C. M. Liddell, and C. J. Summers, Monodispersed ZnS dimers, trimers, and tetramers for lower symmetry photonic crystal lattices, Adv. Mater., 2003, 15(20): 1715

[43]

Y. He, H. T. Lu, L. M. Sai, W. Y. Lai, Q. L. Fan, L. H. Wang, and W. Huang, Synthesis of CdTe nanocrystals through program process of microwave irradiation, J. Phys. Chem. B, 2006, 110(27): 13352

[44]

C. H. Bennett and G. Brassard, Int. Conf. Computers, Systems and Signal Processing, Bangalore, 1984, 1: 175

[45]

F. Pisanello, L. Martiradonna, P. Spinicelli, A. Fiore, J. P. Hermier, L. Manna, R. Cingolani, E. Giacobino, A. Bramati, and M. De Vittorio, Polarized single photon emission for quantum cryptography based on colloidal nanocrystals, IEEE Proc. 11th Int. Conf. Transparent Optical Networks, 2009: 1-4

[46]

A. Convertino, L. Cerri, G. Leo, and S. Viticoli, Growth interruption to tune the emission of InAs quantum dots embedded in InGaAs matrix in the long wavelength region, J. Cryst. Growth, 2004, 261(4): 458

[47]

O. G. Schmidt, Lateral Alignment of Epitaxial Quantum Dots (Springer NanoScience and Technology), Berlin: Springer, 2007

[48]

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. P. Hermier, and B. Dubertret, Towards non-blinking colloidal quantum dots, Nat. Mater., 2008, 7(8): 659

[49]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Quantization of multiparticle auger rates in semiconductor quantum dots, Science, 2000, 287(5455): 1011

[50]

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, Fluorescence intermittency in single cadmium selenide nanocrystals, Nature, 1996, 383(6603): 802

[51]

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. MaccagnanoZacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, Non-blinking semiconductor nanocrystals, Nature, 2009, 459(7247): 686

[52]

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett., 1996, 77(18): 3873

[53]

H. P. Lu and X. S. Xie, Single-molecule spectral fluctuations at room temperature, Nature, 1997, 385(6612): 143

[54]

L. Coolen, X. Brokmann, P. Spinicelli, and J. P. Hermier, Emission characterization of a single CdSe-ZnS nanocrystal with high temporal and spectral resolution by photoncorrelation fourier spectroscopy, Phys. Rev. Lett., 2008, 100(2): 027403

[55]

V. D. Kulakowski, B. Bacher, R. Weigand, T. Kümmel, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, Fine structure of biexciton emission in symmetric and asymmetric cdse/znse single quantum dots, Phys. Rev. Lett., 1999, 82(8): 1780

[56]

R. D. Schaller, S. A. Crooker, D. A. Bussian, J. M. Pietryga, J. Joo, and V. I. Klimov, Revealing the exciton fine structure of PbSe nanocrystal quantum dots using optical spectroscopy in high magnetic fields, Phys. Rev. Lett., 2010, 105(6): 067403

[57]

M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot, Phys. Rev. B, 2009, 80(15): 155326

[58]

S. M. Ulrich, M. Benyoucef, P. Michler, N. Baer, P. Gartner, F. Jahnke, M. Schwab, H. Kurtze, M. Bayer, S. Farad, Z. Wasilewski, and A. Forchel, Correlated photon-pair emission from a charged single quantum dot, Phys. Rev. B, 2005, 71(23): 235328

[59]

A. Mueller, E. B. Flagg, P. Bianucci, X. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity, Phys. Rev. Lett., 2007, 99(18): 187402

[60]

A. Kuhn, M. Hennrich, and G. Rempe, Deterministic singlephoton source for distributed quantum networking, Phys. Rev. Lett., 2002, 89(6): 067901

[61]

N. Le Thomas, U. Woggon, O. Schops, M. V. Artemyev, M. Kazes, and U. Banin, Cavity QED with semiconductor nanocrystals, Nano Lett., 2006, 6(3): 557

[62]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamolu, Quantum nature of a strongly coupled single quantum dot–cavity system, Nature, 2007, 445(7130): 896

[63]

Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity, Appl. Phys. Lett., 2008, 93(18): 183114

[64]

E. Pelucchi, S. Watanabe, K. Leifer, Q. Zhu, B. Dwir, P. De Los Rios, and E. Kapon, Mechanisms of quantum dot energy engineering by metalorganic vapor phase epitaxy on patterned nonplanar substrates, Nano Lett., 2007, 7(5): 1282

[65]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Hofling, and A. Forchel, Single photon emission from a site-controlled quantum dot-micropillar cavity system, Appl. Phys. Lett., 2009, 94(11): 111111

[66]

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities, Appl. Phys. Lett., 2008, 92(26): 263101

[67]

M. Poitras, C. B. Lipson, H. Du, M. A. Hahn, and T. D. Krauss, Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity, Appl. Phys. Lett., 2003, 82(23): 4032

[68]

L. Martidadonna, L. Carbone, M. De Giorgi, L. Manna, G. Gigli, R. Cingolani, and M. De Vittorio, High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology, Appl. Phys. Lett., 2006, 88(18): 181108

[69]

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission, Nano Lett., 2001, 1(6): 309

[70]

A. Qualtieri, G. Morello, P. Spinicelli, M. T. Todaro, T. Stomeo, L. Martiradonna, M. D e Giornia, X. Quelinc, S. Builc, A. Bramati, J. P. Hermier, R. Cingolani, and M. De Vittorio, Room temperature single-photon sources based on single colloidal nanocrystals in microcavities, Superlattices Microstruct., 2010, 47(1): 187

[71]

F. Pisanello, A. Qualtieri, G. Lemünager, L. Martiradonna, T. Stomeo, R. Cingolani, A. Bramati, and M. De Vittorio, Single colloidal quantum dots as sources of single photons for quantum cryptography, Proc. SPIE, 2011, 7947(1): 794709

[72]

A. Qualtieri, L. Martiradonna, T. Stomeo, M. T. Todaro, R. Cingolani, and M. De Vittorio, Multicolored devices fabricated by direct lithography of colloidal nanocrystals, Microelectron. Eng., 2009, 86(4): 1127

[73]

A. Shabaev and A. L. Efros, 1D exciton spectroscopy of semiconductor nanorods, Nano Lett., 2004, 4(10): 1821

[74]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Triggered single photons from a quantum dot, Phys. Rev. Lett., 2001, 86(8): 1502

[75]

A. Malko, D. Y. Oberli, M. H. Baier, E. Pelucchi, F. Michelini, K. F. Karlson, M. A. Dupertuis, and E. Kapon, Singlephoton emission from pyramidal quantum dots: The impact of hole thermalization on photon emission statistics, Phys. Rev. B, 2005, 72(19): 195332

[76]

A. Malko, M. H. Baier, K. F. Karlson, E. Pelucchi, D. Y. Oberli, and E. Kapon, Optimization of the efficiency of single-photon sources based on quantum dots under optical excitation, Appl. Phys. Lett., 2006, 88(8): 081905

[77]

S. Kiravittaya, M. Benyoucef, R. Zapf-Gottwick, A. Rastelli, and O. G. Schmidt, Ordered GaAs quantum dot arrays on GaAs(001): Single photon emission and fine structure splitting, Appl. Phys. Lett., 2006, 89(23): 233102

[78]

S. Kimura, H. Kumano, M. Endo, I. Suemune, T. Yokoi, H. Sasakura, S. Adachi, S. Muto, H. Z. Song, S. Hirose, and T. Usuki, Single-photon generation from InAlAs single quantum dot, Phys. Status Solidi (c), 2005, 2(11): 3833

[79]

M. Bommer, W. M. Schulz, R. Rosbach, M. Jetter, P. Michler, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, Triggered single-photon emission in the red spectral range from optically excited InP/(Al,Ga)InP quantum dots embedded in micropillars up to 100 K, J. Appl. Phys., 2011, 110(6): 063108

[80]

A. Ugur, S. Kremling, F. Hatami, S. Höfling, L. Worschech, A. Forchel, and W. T. Masselink, Single-photon emitters based on epitaxial isolated InP/InGaP quantum dots, Appl. Phys. Lett., 2012, 100(2): 023116

[81]

M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, On-demand single-photon source for 1.3 μm telecom fiber, Appl. Phys. Lett., 2005, 86(20): 201111

[82]

T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, Single-photon emission from single quantum dots in a hybrid pillar microcavity, Appl. Phys. Lett., 2008, 92(8): 081906

[83]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Boumeester, High-frequency singlephoton source with polarization control, Nat. Photonics, 2007, 1(12): 704

[84]

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, A singlephoton turnstile device, Nature, 1999, 397(6719): 500

[85]

A. J. Shields, Semiconductor quantum light sources, Nat. Photonics, 2007, 1(4): 215

[86]

A. J. Bennett, D. C. Unitt, P. See, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, Electrical control of the uncertainty in the time of single photon emission events, Phys. Rev. B, 2005, 72(3): 033316

[87]

M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, P. Atkinson, K. Cooper, and D. A. Ritchie, Electrically driven telecommunication wavelength single-photon source, Appl. Phys. Lett., 2007, 90(6): 063512

[88]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency, Appl. Phys. Lett., 2010, 96(1): 011107

[89]

D. J. Ellis, A. J. Bennett, A. J. Shields, P. Atkinson, and D. A. Ritchie, Electrically addressing a single self-assembled quantum dot, Appl. Phys. Lett., 2006, 88(13): 133509

[90]

M. Scholz, S. Büttner, O. Benson, A. I. Toropov, A. K. Bakarov, A. K. Kalagin, A. Lochmann, E. Stock, O. Schulz, F. Hopfer, V. A. Haisler, and D. Bimberg, Non-classical light emission from a single electrically driven quantum dot, Opt. Express, 2007, 15(15): 9107

[91]

D. J . P. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz, New J. Phys., 2008, 10(4): 043035

[92]

M. Reischle, G. J. Beirne, W. M. Schulz, M. Eichfelder, R. Rosbach, M. Jetter, and P. Michler, Electrically pumped single-photon emission in the visible spectral range up to 80 K, Opt. Express, 2008, 16(17): 12771

[93]

P. Ester, L. Lackmann, S. Michaelis de Vasconcellos, M. C. Hübner, A. Zrenner, and M. Bichler, Single photon emission based on coherent state preparation, Appl. Phys. Lett., 2007, 91(11): 111110

[94]

D. Press, S. Gtzinger, S. Reitzenstein, C. Hofmann, A. Lffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime, Phys. Rev. Lett., 2007, 98(11): 117402

[95]

S. Kako, C. Santori, K. Hoshino, S. Gtzinger, Y. Yamamoto, and Y. Arakawa, A gallium nitride single-photon source operating at 200 K, Nat. Mater., 2006, 5(11): 887

[96]

R. Arians, T. Kmmell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, Room temperature emission from CdSe/ZnSSe/MgS single quantum dots, Appl. Phys. Lett., 2007, 90(10): 101114

[97]

A. Tribu, G. Sallen, T. Aichele, R. André, J. P. Poizat, C. Bougerol, S. Tatarenko, and K. Kheng, A high-temperature single-photon source from nanowire quantum dots, Nano Lett., 2008, 8(12): 4326

[98]

A. F. Jarjour, R. A. Oliver, R. A. Taylor, Nitride-based quantum dots for single photon source applications, physica status solidi (a), 2009, 206(11): 2510

[99]

O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Room temperature single photon emission from an epitaxially grown quantum dot, Appl. Phys. Lett., 2012, 100(6): 061114

[100]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Ultra-high-Qphotonic double-heterostructure nanocavity, Nat. Mater., 2005, 4(3): 207

[101]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities, Phys. Rev. A, 2011, 84(4): 043849

[102]

S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett., 1987, 58(23): 2486

[103]

L. Florescu, Nonclassical light generation by a photoniccrystal one-atom laser, Phys. Rev. A, 2008, 78(2): 023827

[104]

M. I. Makin, J. H. Cole, C. Tahan, L. C. L. Hollenberg, and A. D. Greentree, Quantum phase transitions in photonic cavities with two-level systems, Phys. Rev. A, 2008, 77(5): 053819

[105]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity, Phys. Rev. Lett., 2005, 94(3): 033903

[106]

M. G. Banaee, A. G. Pattantyus-Abraham, M. W. Mccutcheon, G. W. Rieger, and J. F. Young, Efficient coupling of photonic crystal microcavity modes to a ridge waveguide, Appl. Phys. Lett., 2007, 90(19): 193106

[107]

P. Yao, and S. Hughes, Controlled cavity-QED using a planar photonic crystal waveguide-cavity system, arXiv: 0904.4469v2, 2009

[108]

V. S. C. Manga Rao, and S. Hughes, Numerical study of exact Purcell factors in finite-size planar photonic crystal waveguides, Opt. Lett., 2008, 33(14): 1587

[109]

R. Bose, K. Roy, T. Cai, G. S. Solomon, and E. Waks, APS March Meeting2013, 58(1): A26.00009

[110]

A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity, Phys. Rev. Lett., 2010, 104(4): 047402

[111]

E. D. Kim, K. Truex, X. Xu, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, Fast spin rotations by optically controlled geometric phases in a charge-tunable inas quantum dot, Phys. Rev. Lett., 2010, 104(16): 167401

[112]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser, Nat. Photonics, 2011, 5: 297

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (777KB)

1399

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/