Single photon sources with single semiconductor quantum dots
Guang-Cun Shan, Zhang-Qi Yin, Chan Hung Shek, Wei Huang
Single photon sources with single semiconductor quantum dots
In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.
single-photon source / quantum dot (QD) / quantum optics / photon correlation
[1] |
J. M. Gérard and B. Gayral, InAs quantum dots: Artificial atoms for solid-state cavity-quantum electrodynamics, Physica E, 2001, 9(1): 131
CrossRef
ADS
Google scholar
|
[2] |
M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, Efficient source of single photons: A single quantum dot in a micropost microcavity, Phys. Rev. Lett., 2002, 89(23): 233602
CrossRef
ADS
Google scholar
|
[3] |
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature, 2004, 432(7014): 200
CrossRef
ADS
Google scholar
|
[4] |
E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity, Phys. Rev. Lett., 2005, 95(6): 067401
CrossRef
ADS
Google scholar
|
[5] |
M. Pelton and Y. Yamamoto, Ultralow threshold laser using a single quantum dot and a microsphere cavity, Phys. Rev. A, 1999, 59(3): 2418
CrossRef
ADS
Google scholar
|
[6] |
E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature, 2001, 409(6816): 46
CrossRef
ADS
Google scholar
|
[7] |
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys., 2002, 74(1): 145
CrossRef
ADS
Google scholar
|
[8] |
N. Gisin and R. Thew, Quantum communication, Nat. Photonics, 2007, 1(3): 165
CrossRef
ADS
Google scholar
|
[9] |
B. Lounis and M. Orrit, Single-photon sources, Rep. Prog. Phys., 2005, 68(5): 1129
CrossRef
ADS
Google scholar
|
[10] |
A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play” systems for quantum cryp-tography, Appl. Phys. Lett., 1997, 70(7): 793
CrossRef
ADS
Google scholar
|
[11] |
G. Brassard, N. Lutkenhaus, T. Mor, and B. C. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett., 2000, 85(6): 1330
CrossRef
ADS
Google scholar
|
[12] |
A. Kuhn, M. Hennrich, and G. Rempe, Deterministic singlephoton source for distributed quantum networking, Phys. Rev. Lett., 2002, 89(6): 067901
CrossRef
ADS
Google scholar
|
[13] |
M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, Continuous generation of single photons with controlled waveform in an ion-trap cavity system, Nature, 2004, 431(7012): 1075
CrossRef
ADS
Google scholar
|
[14] |
B. Lounis and W. E. Moerner, Single photon on demand from s single molecule at room temperature, Nature, 2000, 407(6803): 491
CrossRef
ADS
Google scholar
|
[15] |
C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Stable solid-state source of single photons, Phys. Rev. Lett., 2000, 85(2): 290
CrossRef
ADS
Google scholar
|
[16] |
Y. M. He, Y. He, Y. J. Wei, D. Wu, M. Atature, C. Schneider, S. Hofling, M. Kamp, C. Y. Lu, and J. W. Pan, Ondemand semiconductor single-photon source with near-unity indistinguishability, Nat. Nanotechnol., 2013, 8(3): 213
CrossRef
ADS
Google scholar
|
[17] |
A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, Deterministic coupling of single quantum dots to single nanocavity modes, Science, 2005, 308(5725): 1158
CrossRef
ADS
Google scholar
|
[18] |
X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission, Phys. Rev. Lett., 2004, 93(10): 107403
CrossRef
ADS
Google scholar
|
[19] |
J. Hu, L. S. Li, W. Yang, L. Manna, L. W. Wang, and A. P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods, Science, 2001, 292(5524): 2060
CrossRef
ADS
Google scholar
|
[20] |
L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, Controlled growth of tetrapod-branched inorganic nanocrystals, Nat. Mater., 2003, 2(6): 382
CrossRef
ADS
Google scholar
|
[21] |
G. Shan, S. Bao, C. H. Shek, and W. Huang, Theoretical study of fluorescence resonant energy transfer dynamics in individual semiconductor nanocrystal–DNA–dye conjugates, J. Lumin., 2012, 132(6): 1472
CrossRef
ADS
Google scholar
|
[22] |
I. N. Stranski and L. Von Krastanow, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, Akademie der Wissenschaften und der Literatur in Mainz, 1939, 146: 797
|
[23] |
G. C. Shan and S. Bao, Theoretical study of a quantum dot microcavity laser, Proc. SPIE, 2007, 6279(1): 627925
CrossRef
ADS
Google scholar
|
[24] |
A. Salhi, G. Rain, L. Fortunato, V. Tasco, G. Visimberga, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Trampert, M. De Vittorio, and A. Passaseo, Enhanced performances of quantum dot lasers operating at 1.3 μm, IEEE J. Sel. Top. Quant., 2008, 14(4): 1188
CrossRef
ADS
Google scholar
|
[25] |
G. C. Shan, M. J. Hu, C. H. Shek, and W. Huang, Verticalexternal-cavity surface-emitting lasers and quantum dot lasers, Front. Optoelectron., 2012, 5(2): 157
CrossRef
ADS
Google scholar
|
[26] |
T. Akiyama, M. Sugawara, and Y. Arakawa, Quantum-dot semiconductor optical amplifiers, Proc. IEEE, 2007, 95(9): 1757
CrossRef
ADS
Google scholar
|
[27] |
S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamoto, and Y. Arakawa, A gallium nitride single-photon source operating at 200 K, Nat. Mater., 2006, 5(11): 887
CrossRef
ADS
Google scholar
|
[28] |
P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, Quantum correlation among photons from a single quantum dot at room temperature, Nature, 2000, 406(6799): 968
CrossRef
ADS
Google scholar
|
[29] |
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Perez-Willard, A. Leitenstorfer, and R. Bratschitsch, Colloidal quantum dots in all-dielectric high-Qpillar microcavities, Nano Lett., 2007, 7(9): 2897
CrossRef
ADS
Google scholar
|
[30] |
T. Takagahara, Theory of exciton dephasing in semiconductor quantum dots, Phys. Rev. B, 1999, 60(19): 2638
CrossRef
ADS
Google scholar
|
[31] |
C. Förstner, C. Weber, J. Danckwerts, and A. Knorr, Phonon-assisted damping of Rabi oscillations insemiconductor quantum dots, Phys. Rev. Lett., 2003, 91(12): 127401
CrossRef
ADS
Google scholar
|
[32] |
E. M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev., 1946, 69(11): 681
|
[33] |
E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities, Appl. Phys. Lett., 2001, 79(18): 2865
CrossRef
ADS
Google scholar
|
[34] |
C. Santori, D. Fattal, and Y. Yamamoto, Single-Photon Devices and Applications, Weinheim: Wiley-VCH, 2010
|
[35] |
M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997
CrossRef
ADS
Google scholar
|
[36] |
R. Loudon, The Quantum Theory of Light, 3rd Ed., Oxford: Oxford Science, 2000
|
[37] |
M. Scholz, T. Aichele, and O. Benson, Single-Photon Generation from Single Quantum Dots, Semiconductor Nanostructures (in Series of NanoScience and Technology), 2008: 329-349
|
[38] |
A. J. Berglund, A. C. Doherty, and H. Mabuchi, Photon statistics and dynamics of fluorescence resonance energy transfer, Phys. Rev. Lett., 2002, 89(6): 068101
CrossRef
ADS
Google scholar
|
[39] |
A. Qualtieri, G. Morello, P. Spinicelli, M. T. Todaro, T. Stomeo, L. Martiradonna, M. De Giornia, X. Quelinc, S. Builc, A. Bramati, J. P. Hermier, R. Cingolani, and M. De Vittorio, Nonclassical emission from single colloidal nanocrystals in a microcavity: A route towards room temperature single photon sources, New J. Phys., 2009, 11(3): 033025
CrossRef
ADS
Google scholar
|
[40] |
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, A quantum dot single-photon turnstile device, Science, 2000, 290(5500): 2282
CrossRef
ADS
Google scholar
|
[41] |
D. V. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J. M. Lupton, A. L. Rogach, O. Benson, J. Feldmann, and H. Weller, Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality, Nano Lett., 2003, 3(12): 1677
CrossRef
ADS
Google scholar
|
[42] |
C. M. Liddell, and C. J. Summers, Monodispersed ZnS dimers, trimers, and tetramers for lower symmetry photonic crystal lattices, Adv. Mater., 2003, 15(20): 1715
CrossRef
ADS
Google scholar
|
[43] |
Y. He, H. T. Lu, L. M. Sai, W. Y. Lai, Q. L. Fan, L. H. Wang, and W. Huang, Synthesis of CdTe nanocrystals through program process of microwave irradiation, J. Phys. Chem. B, 2006, 110(27): 13352
CrossRef
ADS
Google scholar
|
[44] |
C. H. Bennett and G. Brassard, Int. Conf. Computers, Systems and Signal Processing, Bangalore, 1984, 1: 175
|
[45] |
F. Pisanello, L. Martiradonna, P. Spinicelli, A. Fiore, J. P. Hermier, L. Manna, R. Cingolani, E. Giacobino, A. Bramati, and M. De Vittorio, Polarized single photon emission for quantum cryptography based on colloidal nanocrystals, IEEE Proc. 11th Int. Conf. Transparent Optical Networks, 2009: 1-4
|
[46] |
A. Convertino, L. Cerri, G. Leo, and S. Viticoli, Growth interruption to tune the emission of InAs quantum dots embedded in InGaAs matrix in the long wavelength region, J. Cryst. Growth, 2004, 261(4): 458
CrossRef
ADS
Google scholar
|
[47] |
O. G. Schmidt, Lateral Alignment of Epitaxial Quantum Dots (Springer NanoScience and Technology), Berlin: Springer, 2007
|
[48] |
B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. P. Hermier, and B. Dubertret, Towards non-blinking colloidal quantum dots, Nat. Mater., 2008, 7(8): 659
CrossRef
ADS
Google scholar
|
[49] |
V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Quantization of multiparticle auger rates in semiconductor quantum dots, Science, 2000, 287(5455): 1011
CrossRef
ADS
Google scholar
|
[50] |
M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, Fluorescence intermittency in single cadmium selenide nanocrystals, Nature, 1996, 383(6603): 802
CrossRef
ADS
Google scholar
|
[51] |
X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. MaccagnanoZacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, Non-blinking semiconductor nanocrystals, Nature, 2009, 459(7247): 686
CrossRef
ADS
Google scholar
|
[52] |
S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett., 1996, 77(18): 3873
CrossRef
ADS
Google scholar
|
[53] |
H. P. Lu and X. S. Xie, Single-molecule spectral fluctuations at room temperature, Nature, 1997, 385(6612): 143
CrossRef
ADS
Google scholar
|
[54] |
L. Coolen, X. Brokmann, P. Spinicelli, and J. P. Hermier, Emission characterization of a single CdSe-ZnS nanocrystal with high temporal and spectral resolution by photoncorrelation fourier spectroscopy, Phys. Rev. Lett., 2008, 100(2): 027403
CrossRef
ADS
Google scholar
|
[55] |
V. D. Kulakowski, B. Bacher, R. Weigand, T. Kümmel, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, Fine structure of biexciton emission in symmetric and asymmetric cdse/znse single quantum dots, Phys. Rev. Lett., 1999, 82(8): 1780
CrossRef
ADS
Google scholar
|
[56] |
R. D. Schaller, S. A. Crooker, D. A. Bussian, J. M. Pietryga, J. Joo, and V. I. Klimov, Revealing the exciton fine structure of PbSe nanocrystal quantum dots using optical spectroscopy in high magnetic fields, Phys. Rev. Lett., 2010, 105(6): 067403
CrossRef
ADS
Google scholar
|
[57] |
M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot, Phys. Rev. B, 2009, 80(15): 155326
CrossRef
ADS
Google scholar
|
[58] |
S. M. Ulrich, M. Benyoucef, P. Michler, N. Baer, P. Gartner, F. Jahnke, M. Schwab, H. Kurtze, M. Bayer, S. Farad, Z. Wasilewski, and A. Forchel, Correlated photon-pair emission from a charged single quantum dot, Phys. Rev. B, 2005, 71(23): 235328
CrossRef
ADS
Google scholar
|
[59] |
A. Mueller, E. B. Flagg, P. Bianucci, X. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity, Phys. Rev. Lett., 2007, 99(18): 187402
CrossRef
ADS
Google scholar
|
[60] |
A. Kuhn, M. Hennrich, and G. Rempe, Deterministic singlephoton source for distributed quantum networking, Phys. Rev. Lett., 2002, 89(6): 067901
CrossRef
ADS
Google scholar
|
[61] |
N. Le Thomas, U. Woggon, O. Schops, M. V. Artemyev, M. Kazes, and U. Banin, Cavity QED with semiconductor nanocrystals, Nano Lett., 2006, 6(3): 557
CrossRef
ADS
Google scholar
|
[62] |
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamolu, Quantum nature of a strongly coupled single quantum dot–cavity system, Nature, 2007, 445(7130): 896
CrossRef
ADS
Google scholar
|
[63] |
Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity, Appl. Phys. Lett., 2008, 93(18): 183114
CrossRef
ADS
Google scholar
|
[64] |
E. Pelucchi, S. Watanabe, K. Leifer, Q. Zhu, B. Dwir, P. De Los Rios, and E. Kapon, Mechanisms of quantum dot energy engineering by metalorganic vapor phase epitaxy on patterned nonplanar substrates, Nano Lett., 2007, 7(5): 1282
CrossRef
ADS
Google scholar
|
[65] |
C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Hofling, and A. Forchel, Single photon emission from a site-controlled quantum dot-micropillar cavity system, Appl. Phys. Lett., 2009, 94(11): 111111
CrossRef
ADS
Google scholar
|
[66] |
P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities, Appl. Phys. Lett., 2008, 92(26): 263101
CrossRef
ADS
Google scholar
|
[67] |
M. Poitras, C. B. Lipson, H. Du, M. A. Hahn, and T. D. Krauss, Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity, Appl. Phys. Lett., 2003, 82(23): 4032
CrossRef
ADS
Google scholar
|
[68] |
L. Martidadonna, L. Carbone, M. De Giorgi, L. Manna, G. Gigli, R. Cingolani, and M. De Vittorio, High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology, Appl. Phys. Lett., 2006, 88(18): 181108
CrossRef
ADS
Google scholar
|
[69] |
M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission, Nano Lett., 2001, 1(6): 309
CrossRef
ADS
Google scholar
|
[70] |
A. Qualtieri, G. Morello, P. Spinicelli, M. T. Todaro, T. Stomeo, L. Martiradonna, M. D e Giornia, X. Quelinc, S. Builc, A. Bramati, J. P. Hermier, R. Cingolani, and M. De Vittorio, Room temperature single-photon sources based on single colloidal nanocrystals in microcavities, Superlattices Microstruct., 2010, 47(1): 187
CrossRef
ADS
Google scholar
|
[71] |
F. Pisanello, A. Qualtieri, G. Lemünager, L. Martiradonna, T. Stomeo, R. Cingolani, A. Bramati, and M. De Vittorio, Single colloidal quantum dots as sources of single photons for quantum cryptography, Proc. SPIE, 2011, 7947(1): 794709
CrossRef
ADS
Google scholar
|
[72] |
A. Qualtieri, L. Martiradonna, T. Stomeo, M. T. Todaro, R. Cingolani, and M. De Vittorio, Multicolored devices fabricated by direct lithography of colloidal nanocrystals, Microelectron. Eng., 2009, 86(4): 1127
CrossRef
ADS
Google scholar
|
[73] |
A. Shabaev and A. L. Efros, 1D exciton spectroscopy of semiconductor nanorods, Nano Lett., 2004, 4(10): 1821
CrossRef
ADS
Google scholar
|
[74] |
C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Triggered single photons from a quantum dot, Phys. Rev. Lett., 2001, 86(8): 1502
CrossRef
ADS
Google scholar
|
[75] |
A. Malko, D. Y. Oberli, M. H. Baier, E. Pelucchi, F. Michelini, K. F. Karlson, M. A. Dupertuis, and E. Kapon, Singlephoton emission from pyramidal quantum dots: The impact of hole thermalization on photon emission statistics, Phys. Rev. B, 2005, 72(19): 195332
CrossRef
ADS
Google scholar
|
[76] |
A. Malko, M. H. Baier, K. F. Karlson, E. Pelucchi, D. Y. Oberli, and E. Kapon, Optimization of the efficiency of single-photon sources based on quantum dots under optical excitation, Appl. Phys. Lett., 2006, 88(8): 081905
CrossRef
ADS
Google scholar
|
[77] |
S. Kiravittaya, M. Benyoucef, R. Zapf-Gottwick, A. Rastelli, and O. G. Schmidt, Ordered GaAs quantum dot arrays on GaAs(001): Single photon emission and fine structure splitting, Appl. Phys. Lett., 2006, 89(23): 233102
CrossRef
ADS
Google scholar
|
[78] |
S. Kimura, H. Kumano, M. Endo, I. Suemune, T. Yokoi, H. Sasakura, S. Adachi, S. Muto, H. Z. Song, S. Hirose, and T. Usuki, Single-photon generation from InAlAs single quantum dot, Phys. Status Solidi (c), 2005, 2(11): 3833
CrossRef
ADS
Google scholar
|
[79] |
M. Bommer, W. M. Schulz, R. Rosbach, M. Jetter, P. Michler, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, Triggered single-photon emission in the red spectral range from optically excited InP/(Al,Ga)InP quantum dots embedded in micropillars up to 100 K, J. Appl. Phys., 2011, 110(6): 063108
CrossRef
ADS
Google scholar
|
[80] |
A. Ugur, S. Kremling, F. Hatami, S. Höfling, L. Worschech, A. Forchel, and W. T. Masselink, Single-photon emitters based on epitaxial isolated InP/InGaP quantum dots, Appl. Phys. Lett., 2012, 100(2): 023116
CrossRef
ADS
Google scholar
|
[81] |
M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, On-demand single-photon source for 1.3 μm telecom fiber, Appl. Phys. Lett., 2005, 86(20): 201111
CrossRef
ADS
Google scholar
|
[82] |
T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, Single-photon emission from single quantum dots in a hybrid pillar microcavity, Appl. Phys. Lett., 2008, 92(8): 081906
CrossRef
ADS
Google scholar
|
[83] |
S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Boumeester, High-frequency singlephoton source with polarization control, Nat. Photonics, 2007, 1(12): 704
CrossRef
ADS
Google scholar
|
[84] |
J. Kim, O. Benson, H. Kan, and Y. Yamamoto, A singlephoton turnstile device, Nature, 1999, 397(6719): 500
CrossRef
ADS
Google scholar
|
[85] |
A. J. Shields, Semiconductor quantum light sources, Nat. Photonics, 2007, 1(4): 215
CrossRef
ADS
Google scholar
|
[86] |
A. J. Bennett, D. C. Unitt, P. See, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, Electrical control of the uncertainty in the time of single photon emission events, Phys. Rev. B, 2005, 72(3): 033316
CrossRef
ADS
Google scholar
|
[87] |
M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, P. Atkinson, K. Cooper, and D. A. Ritchie, Electrically driven telecommunication wavelength single-photon source, Appl. Phys. Lett., 2007, 90(6): 063512
CrossRef
ADS
Google scholar
|
[88] |
T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency, Appl. Phys. Lett., 2010, 96(1): 011107
CrossRef
ADS
Google scholar
|
[89] |
D. J. Ellis, A. J. Bennett, A. J. Shields, P. Atkinson, and D. A. Ritchie, Electrically addressing a single self-assembled quantum dot, Appl. Phys. Lett., 2006, 88(13): 133509
CrossRef
ADS
Google scholar
|
[90] |
M. Scholz, S. Büttner, O. Benson, A. I. Toropov, A. K. Bakarov, A. K. Kalagin, A. Lochmann, E. Stock, O. Schulz, F. Hopfer, V. A. Haisler, and D. Bimberg, Non-classical light emission from a single electrically driven quantum dot, Opt. Express, 2007, 15(15): 9107
CrossRef
ADS
Google scholar
|
[91] |
D. J . P. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz, New J. Phys., 2008, 10(4): 043035
CrossRef
ADS
Google scholar
|
[92] |
M. Reischle, G. J. Beirne, W. M. Schulz, M. Eichfelder, R. Rosbach, M. Jetter, and P. Michler, Electrically pumped single-photon emission in the visible spectral range up to 80 K, Opt. Express, 2008, 16(17): 12771
CrossRef
ADS
Google scholar
|
[93] |
P. Ester, L. Lackmann, S. Michaelis de Vasconcellos, M. C. Hübner, A. Zrenner, and M. Bichler, Single photon emission based on coherent state preparation, Appl. Phys. Lett., 2007, 91(11): 111110
CrossRef
ADS
Google scholar
|
[94] |
D. Press, S. Gtzinger, S. Reitzenstein, C. Hofmann, A. Lffler, M. Kamp, A. Forchel, and Y. Yamamoto, Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime, Phys. Rev. Lett., 2007, 98(11): 117402
CrossRef
ADS
Google scholar
|
[95] |
S. Kako, C. Santori, K. Hoshino, S. Gtzinger, Y. Yamamoto, and Y. Arakawa, A gallium nitride single-photon source operating at 200 K, Nat. Mater., 2006, 5(11): 887
CrossRef
ADS
Google scholar
|
[96] |
R. Arians, T. Kmmell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, Room temperature emission from CdSe/ZnSSe/MgS single quantum dots, Appl. Phys. Lett., 2007, 90(10): 101114
CrossRef
ADS
Google scholar
|
[97] |
A. Tribu, G. Sallen, T. Aichele, R. André, J. P. Poizat, C. Bougerol, S. Tatarenko, and K. Kheng, A high-temperature single-photon source from nanowire quantum dots, Nano Lett., 2008, 8(12): 4326
CrossRef
ADS
Google scholar
|
[98] |
A. F. Jarjour, R. A. Oliver, R. A. Taylor, Nitride-based quantum dots for single photon source applications, physica status solidi (a), 2009, 206(11): 2510
|
[99] |
O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Room temperature single photon emission from an epitaxially grown quantum dot, Appl. Phys. Lett., 2012, 100(6): 061114
CrossRef
ADS
Google scholar
|
[100] |
B. S. Song, S. Noda, T. Asano, and Y. Akahane, Ultra-high-Qphotonic double-heterostructure nanocavity, Nat. Mater., 2005, 4(3): 207
CrossRef
ADS
Google scholar
|
[101] |
W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities, Phys. Rev. A, 2011, 84(4): 043849
CrossRef
ADS
Google scholar
|
[102] |
S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett., 1987, 58(23): 2486
CrossRef
ADS
Google scholar
|
[103] |
L. Florescu, Nonclassical light generation by a photoniccrystal one-atom laser, Phys. Rev. A, 2008, 78(2): 023827
CrossRef
ADS
Google scholar
|
[104] |
M. I. Makin, J. H. Cole, C. Tahan, L. C. L. Hollenberg, and A. D. Greentree, Quantum phase transitions in photonic cavities with two-level systems, Phys. Rev. A, 2008, 77(5): 053819
CrossRef
ADS
Google scholar
|
[105] |
S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity, Phys. Rev. Lett., 2005, 94(3): 033903
CrossRef
ADS
Google scholar
|
[106] |
M. G. Banaee, A. G. Pattantyus-Abraham, M. W. Mccutcheon, G. W. Rieger, and J. F. Young, Efficient coupling of photonic crystal microcavity modes to a ridge waveguide, Appl. Phys. Lett., 2007, 90(19): 193106
CrossRef
ADS
Google scholar
|
[107] |
P. Yao, and S. Hughes, Controlled cavity-QED using a planar photonic crystal waveguide-cavity system, arXiv: 0904.4469v2, 2009
|
[108] |
V. S. C. Manga Rao, and S. Hughes, Numerical study of exact Purcell factors in finite-size planar photonic crystal waveguides, Opt. Lett., 2008, 33(14): 1587
CrossRef
ADS
Google scholar
|
[109] |
R. Bose, K. Roy, T. Cai, G. S. Solomon, and E. Waks, APS March Meeting2013, 58(1): A26.00009
|
[110] |
A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vuckovic, Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity, Phys. Rev. Lett., 2010, 104(4): 047402
CrossRef
ADS
Google scholar
|
[111] |
E. D. Kim, K. Truex, X. Xu, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, Fast spin rotations by optically controlled geometric phases in a charge-tunable inas quantum dot, Phys. Rev. Lett., 2010, 104(16): 167401
CrossRef
ADS
Google scholar
|
[112] |
B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser, Nat. Photonics, 2011, 5: 297
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |