[1] R. G. Vishwakarma, Gravity of
Rμν = 0: A new paradigm in GR, to appear in
Open Astron. J.,
arXiv: 1206.2795 , 2012
[2] R. G. Vishwakarma, Mysteries of the geometrization of gravitation,
arXiv: 1206.5789 , 2012
[3] R. G. Vishwakarma, Einstein’s gravity under pressure,
Astrophys. Space Sci. , 2009, 321: 151
10.1007/s10509-009-0016-8
[4] R. G. Vishwakarma, On the relativistic formulation of matter,
Astrophys. Space Sci. , 2012, 340: 373
10.1007/s10509-012-1051-4
[5] S. W. Hawking and G. F. R.Ellis, The Large Scale Structure of Spacetime,
Cambridge:
Cambridge University Press, 1973
10.1017/CBO9780511524646
[6] E. Kasner, Geometrical theorems on Einstein’s cosmological equations,
Am. J. Math. , 1921, 43: 217
10.2307/2370192
[7] V. V. Narlikar and K. R. Karmarkar, A curious solution of Einstein’s field equations,
Curr. Sci. , 1946, 3: 69
[8] J. V. Narlikar, An Introduction to Cosmology,
Cambridge:
Cambridge University Press, 2002
[9] S. Hawking and L. Milodinow, The Grand Design, Bantom Books,
New York , 2010
[10] E. Ayon-Beato, C. Martinez, R. Tronoso, and J. Zanelli, Gravitational Cheshire effect: Nonminimally coupled scalar fields may not curve spacetime,
Phys. Rev. D , 2005, 71: 104037
10.1103/PhysRevD.71.104037
[11] R. G. Vishwakarma, A curious explanation of some cosmological phenomena,
Phys. Scripta , 2013, 05: 055901
10.1088/0031-8949/87/05/055901
[12] A. Einstein, Relativity: The Special and the General Theory, 1955
[13] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity,
John Wiley & Sons , 1972
[14] J. M. M.Senovilla, New class of inhomogeneous cosmological perfect-fluid solutions without big-bang singularity,
Phys. Rev. Lett. , 1990, 64: 2219
10.1103/PhysRevLett.64.2219
[15] N. Dadhich, L. K. Patel, and R. Tikekar, Singularity free spacetimes- I: Metric and fluid models,
Pramana- J. Phys. , 1995, 44: 303
[16] R. G. Vishwakarma, A dark energy model resulting from a Ricci symmetry revisited,
Nuovo Cim. B , 2007, 122: 113
[17] S. Perlmutter,
., Measurements of
Ωand
Λfrom 42 high-redshift supernovae,
Astrophys. J. , 1999, 517: 565
10.1086/307221
[18] R. G. Vishwakarma and J. V. Narlikar, A critique of supernova data analysis in cosmology,
Res. Astron. Astrophys. , 2010, 10: 1195
10.1088/1674-4527/10/12/001
[19] A. Riess,
., New Hubble Space Telescope discoveries of Type Ia supernovae at
z>1: Narrowing constraints on the early behavior of dark energy,
Astrophys. J. , 2007, 659: 98
10.1086/510378
[20] D. O. Jones,
, The discovery of the most distant known Type Ia supernova at redshift 1.914,
Astrophys. J. , 2013, 768:166
10.1088/0004-637X/768/2/166
[21] J. C. Jackson and M. Dodgson, Deceleration without dark matter,
Mon. Not. R. Astron. Soc. , 1997, 285: 806
10.1093/mnras/285.4.806
[22] L. I. Gurvits, Apparent milliarcsecond sizes of active galactic nuclei and the geometry of the Universe,
Astrophys. J. , 1994, 425: 442
10.1086/173999
[23] S. K. Banerjee and J. V. Narlikar, The quasi-steady state cosmology: A study of angular size against redshift,
Mon. Not. R. Astron. Soc. , 1999, 307:73
10.1046/j.1365-8711.1999.02610.x
[24] R. G. Vishwakarma, A study of angular size-redshift relation for models in which
Λdecays as the energy density,
Class. Quantum Grav. , 2000, 17:3833
10.1088/0264-9381/17/18/317
[25] R. G. Vishwakarma and P. Singh, Can brane cosmology with a vanishing
Λ explain the observations?
Class. Quantum Grav. , 2003, 20: 2033
10.1088/0264-9381/20/11/306
[26] L. I. Gurvits, K. I. Kellermann, and S. Frey, The “angular size- redshift” relation for compact radio structures in quasars and radio galaxies,
Astron. Astrophys. , 1999, 342: 378
[27] R. G. Vishwakarma, Consequences on variable lambda models from distant type Ia supernovae and compact radio sources,
Class. Quantum Grav. , 2001, 18: 1159
10.1088/0264-9381/18/7/301
[28] J. R. Mould,
, The HST key project on the extragalactic distance scale XXVIII: Combining the constraints on the Hubble constant,
Astrophys. J ., 2000, 529: 786
10.1086/308304
[29] O. Y. Gnedin, O. Lahav, M. J. Rees, Do globular clusters time the Universe?
arXiv: astro-ph/0108034 , 2001
[30] R. Cayrel,
, Measurement of stellar age from uranium decay,
Nature , 2001, 409: 691
10.1038/35055507
[31] D. Larson,
, Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Power spectra and WMAP-derived parameters,
Astrophys. J. Suppl. , 2011, 192: 16
10.1088/0067-0049/192/2/16
[32] D. Mania and B. Ratra, Constraints on dark energy from H II starburst galaxy apparent magnitude versus redshift data,
Phys. Lett. B , 2012, 715: 9
10.1016/j.physletb.2012.07.011
[33] R. R. Siegel,
, Towards a precision cosmology from starburst galaxies at
z>2,
Mon. Not. R. Astron. Soc. , 2005, 356: 1117
10.1111/j.1365-2966.2004.08539.x
[34] L. P. Grishchuk, Duration of inflation and possible remnants of the preinflationary Universe,
Phys. Rev. D , 1992, 45: 4717
10.1103/PhysRevD.45.4717
[35] L. P. Grishchuk, Some uncomfortable thoughts on the nature of gravity, cosmology, and the early Universe,
Space Sci. Rev. , 2009, 148: 315
10.1007/s11214-009-9509-6
[36] C. Corda, Interferometric detection of gravitational waves: the definitive test for General Relativity,
Int. J. Mod. Phys. D , 2009, 18: 2275
10.1142/S0218271809015904
[37] R. G. Vishwakarma, Is the present expansion of the Universe really accelerating?
Mon. Not. R. Astron. Soc . 2003, 345: 545
10.1046/j.1365-8711.2003.06960.x