Oblique angle deposition and its applications in plasmonics

Yizhuo He1, Junxue Fu2, Yiping Zhao1()

PDF(798 KB)
PDF(798 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (1) : 47-59. DOI: 10.1007/s11467-013-0357-1
REVIEW ARTICLE
REVIEW ARTICLE

Oblique angle deposition and its applications in plasmonics

  • Yizhuo He1, Junxue Fu2, Yiping Zhao1()
Author information +
History +

Abstract

Plasmonics based on localized surface plasmon resonance (LSPR) has found many exciting applications recently. Those applications usually require a good morphological and structural control of metallic nanostructures. Oblique angle deposition (OAD) has been demonstrated as a powerful technique for various plasmonic applications due to its advantages in controlling the size, shape, and composition of metallic nanostructures. In this review, we focus on the fabrication of metallic nanostructures by OAD and their applications in plasmonics. After a brief introduction to OAD technique, recent progress of applying OAD in fabricating noble metallic nanostructures for LSPR sensing, surface-enhanced Raman scattering, surface-enhanced infrared absorption, metal-enhanced fluorescence, and metamaterials, and their corresponding properties are reviewed. The future requirements for OAD plasmonics applications are also discussed.

Graphical abstract

Keywords

Oblique angle deposition / glancing angle deposition / Plasmonics / localized surface plasmon resonance / surface-enhanced Raman spectroscopy / surface-enhanced infrared absorption / metal-enhanced fluorescence / metamaterial

Cite this article

Download citation ▾
Yizhuo He, Junxue Fu, Yiping Zhao. Oblique angle deposition and its applications in plasmonics. Front. Phys., 2014, 9(1): 47‒59 https://doi.org/10.1007/s11467-013-0357-1

References

[1] B. Rodriguez-Gonzalez, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. L.Marzan, Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties, J. Mater. Chem. , 2005, 15(17): 175510.1039/b500556f
[2] M. M. Miller and A. A. Lazarides, Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment, J. Phys. Chem. B , 2005, 109(46): 2155610.1021/jp054227y
[3] C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. , 2005, 105(4): 102510.1021/cr030063a
[4] H. X. Li and L. Rothberg, Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles, Proc. Natl. Acad. Sci. USA , 2004, 101(39): 1403610.1073/pnas.0406115101
[5] N. L. Rosi and C. A. Mirkin, Nanostructures in biodiagnostics, Chem. Rev. , 2005, 105(4): 154710.1021/cr030067f
[6] D. Cialla, A. M?rz, R. B?hme, F. Theil, K. Weber, M. Schmitt, and J. Popp, Surface-enhanced Raman spectroscopy (SERS): Progress and trends, Anal. Bioanal. Chem. , 2012, 403(1): 2710.1007/s00216-011-5631-x
[7] P. Negri and R. A. Dluhy, Ag nanorod based surfaceenhanced Ramanspectroscopy applied to bioanalytical sensing, J. Biophotonics , 2013, 6: 2010.1002/jbio.201200133
[8] B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, SERS: Materials, applications, and the future, Mater. Today , 2012, 15(1-2): 1610.1016/S1369-7021(12)70017-2
[9] R. F. Aroca, D. J. Ross, and C. Domingo, Surface-enhanced infrared spectroscopy, Appl. Spectrosc. , 2004, 58(11): 324A10.1366/0003702042475420
[10] M. Osawa, Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS), Bull. Chem. Soc. Jpn. , 1997, 70(12): 286110.1246/bcsj.70.2861
[11] N. Bondre, Y. X. Zhang, and C. D. Geddes, Metal-enhanced fluorescence based calcium detection: Greater than 100-fold increase in signal/noise using Fluo-3 or Fluo-4 and silver nanostructures, Sens. Actuators B , 2011, 152(1): 8210.1016/j.snb.2010.09.041
[12] R. Nooney, A. Clifford, X. Leguevel, O. Stranik, C. McDonagh, and B. D. Maccraith, Enhancing the analytical performance of immunoassays that employ metal-enhanced fluorescence, Anal. Bioanal. Chem. , 2010, 396(3): 112710.1007/s00216-009-3357-9
[13] A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, M. A. Schenerman, and C. D. Geddes, Metalenhanced PicoGreen fluorescence: Application to fast and ultra-sensitive pg/ml DNA quantitation, J. Immunol. Methods , 2010, 362(1-2): 9510.1016/j.jim.2010.09.011
[14] Y. Liu and X. Zhang, Metamaterials: A new frontier of science and technology, Chem. Soc. Rev. , 2011, 40(5): 249410.1039/c0cs00184h
[15] T. Tanaka, Plasmonic metamaterials, IEICE Electron. Express , 2012, 9(2): 3410.1587/elex.9.34
[16] X. Z. Zhou, F. Boey, F. W. Huo, L. Huang, and H. Zhang, Chemically functionalized surface patterning, Small , 2011, 7(16): 227310.1002/smll.201002381
[17] Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonic nanolithography: A review, Plasmonics , 2011, 6(3): 56510.1007/s11468-011-9237-0
[18] R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, Self-assembled metal colloid monolayers: An approach to SERS substrates, Science , 1995, 267(5204): 162910.1126/science.267.5204.1629
[19] Y. J. Liu, H. Y. Chu, and Y. P. Zhao, Silver nanorod array substrates fabricated by oblique angle deposition: Morphological, optical, and SERS characterizations, J. Phys. Chem. C , 2010, 114(18): 817610.1021/jp1001644
[20] Y. J. Jen, A. Lakhtakia, C. W. Yu, and C. T. Lin, Vapordeposited thin films with negative real refractive index in the visible regime, Opt. Express , 2009, 17(10): 778410.1364/OE.17.007784
[21] K. Robbie, J. C. Sit, and M. J. Brett, Advanced techniques for glancing angle deposition, J. Vac. Sci. Technol. B , 1998, 16(3): 111510.1116/1.590019
[22] M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, Periodically structured metallic substrates for SERS, Sens. Actuators B , 1998, 51(1-3): 28510.1016/S0925-4005(98)00219-6
[23] N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, Surfaceenhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing, ACS Nano , 2008, 2(2): 37710.1021/nn7003487
[24] V. M. Shalaev,W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Negative index of refraction in optical metamaterials, Opt. Lett. , 2005, 30(24): 335610.1364/OL.30.003356
[25] S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, Yellow-light negative-index metamaterials, Opt. Lett. , 2009, 34(22): 347810.1364/OL.34.003478
[26] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays, J. Phys. Chem. B , 1999, 103(19): 385410.1021/jp9904771
[27] C. L. Haynes and R. P. Van Duyne, Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics, J. Phys. Chem. B , 2001, 105(24): 559910.1021/jp010657m
[28] A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy, Langmuir , 2004, 20(16): 692710.1021/la0494674
[29] L. Abelmann and C. Lodder, Oblique evaporation and surface diffusion, Thin Solid Films , 1997, 305(1-2): 110.1016/S0040-6090(97)00095-3
[30] H. Vankranenburg and C. Lodder, Tailoring growth and local composition by oblique-incidence deposition: A review and new experimental data, Mater. Sci. Eng. R , 1994, 11(7): 29510.1016/0927-796X(94)90021-3
[31] K. Robbie and M. J. Brett, Sculptured thin films and glancing angle deposition: Growth mechanics and applications, J. Vac. Sci. Technol. A , 1997, 15(3): 146010.1116/1.580562
[32] Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, Novel nano-column and nano-flower arrays by glancing angle deposition, Nano Lett. , 2002, 2(4): 35110.1021/nl0157041
[33] Y. P. He and Y. P. Zhao, Advanced multi-component nanostructures designed by dynamic shadowing growth, Nanoscale , 2011, 3(6): 236110.1039/c1nr10103j
[34] J. X. Fu, Y. P. He, and Y. P. Zhao, Fabrication of heteronanorod structures by dynamic shadowing growth, IEEE Sens. J. , 2008, 8(6): 98910.1109/JSEN.2008.923939
[35] Y. P. He, Z. Y. Zhang, C. Hoffmann, and Y. P. Zhao, Embedding Ag nanoparticles into MgF2 nanorod arrays, Adv. Funct. Mater. , 2008, 18(11): 167610.1002/adfm.200800065
[36] Y. P. He, Y. P. Zhao, and J. S. Wu, The effect of Ti doping on the growth of Mg nanostructures by oblique angle codeposition, Appl. Phys. Lett. , 2008, 92(6): 06310710.1063/1.2844852
[37] Y. P. He, C. Brown, C. A. Lundgren, and Y. P. Zhao, The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties, Nanotechnology , 2012, 23(36): 36570310.1088/0957-4484/23/36/365703
[38] G. K. Larsen, R. Fitzmorris, J. Z. Zhang, and Y. P. Zhao, Structural, optical, and photocatalytic properties of Cr:TiO2 nanorod array fabricated by oblique angle codeposition, J. Phys. Chem. C , 2011, 115(34): 1689210.1021/jp205197f
[39] G. K. Larsen, B. C. Fitzmorris, C. Longo, J. Z. Zhang, and Y. P. Zhao, Nanostructured homogenous CdSe-TiO2 composite visible light photoanodes fabricated by oblique angle codeposition, J. Mater. Chem. , 2012, 22(28): 1420510.1039/c2jm32551a
[40] Y. P. He, J. S. Wu, and Y. P. Zhao, Designing catalytic nanomotors by dynamic shadowing growth, Nano Lett. , 2007, 7(5): 136910.1021/nl070461j
[41] Y. P. He, J. X. Fu, Y. Zhang, Y. P. Zhao, L. J. Zhang, A. L. Xia, and J. W. Cai, Multilayered Si/Ni nanosprings and their magnetic properties, Small , 2007, 3(1): 15310.1002/smll.200600375
[42] W. Smith and Y. P. Zhao, Enhanced photocatalytic activity by aligned WO3/TiO2 two-layer nanorod arrays, J. Phys. Chem. C , 2008, 112(49): 1963510.1021/jp807703d
[43] W. Smith and Y. P. Zhao, Superior photocatalytic performance by vertically aligned core-shell TiO2/WO3 nanorod arrays, Catal. Commun. , 2009, 10(7): 111710.1016/j.catcom.2009.01.010
[44] R. Gupta, M. J. Dyer, and W. A. Weimer, Preparation and characterization of surface plasmon resonance tunable gold and silver films, J. Appl. Phys. , 2002, 92(9): 526410.1063/1.1511275
[45] J. X. Fu, A. Collins, and Y. P. Zhao, Optical properties and biosensor application of ultrathin silver films prepared by oblique angle deposition, J. Phys. Chem. C , 2008, 112(43): 1678410.1021/jp802909g
[46] J. X. Fu and Y. P. Zhao, Au nanoparticle based localized surface plasmon resonance substrates fabricated by dynamic shadowing growth, Nanotechnology , 2010, 21(17): 17530310.1088/0957-4484/21/17/175303
[47] D. A. Gish, F. Nsiah, M. T. McDermott, and M. J. Brett, Localized surface plasmon resonance biosensor using silver nanostructures fabricated by glancing angle deposition, Anal. Chem. , 2007, 79(11): 422810.1021/ac0622274
[48] D. R. H.Craig and F. Bohren, Absorption and scattering of light by small particles, New York: Wiley, 1983
[49] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Berlin: Springer, 199510.1007/978-3-662-09109-8
[50] J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates, J. Phys. Chem. C , 2008, 112(4): 89510.1021/jp075288u
[51] Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, Surfaceenhanced Raman scattering from helical silver nanorod arrays, Chem. Commun. , 2011, 47(15): 446610.1039/c0cc05465h
[52] Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, Optical properties and surface enhanced raman scattering of L-shaped silver nanorod arrays, J. Phys. Chem. C , 2011, 115(29): 1413110.1021/jp204389v
[53] J. P. Singh, T. E. Lanier, H. Zhu, W. M. Dennis, R. A. Tripp, and Y. Zhao, Highly sensitive and transparent surface enhanced Raman scattering substrates made by active coldly condensed Ag nanorod arrays, J. Phys. Chem. C , 2012, 116(38): 2055010.1021/jp305061s
[54] Q. Zhou, X. Zhang, Y. Huang, Z. Li, Y. Zhao, and Z. Zhang, Enhanced surface-enhanced Raman scattering performance by folding silver nanorods, Appl. Phys. Lett. , 2012, 100(11): 11310110.1063/1.3694056
[55] S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates, Appl. Phys. Lett. , 2005, 87(3): 03190810.1063/1.1988980
[56] C. L. Leverette, S. A. Jacobs, S. Shanmukh, S. B. Chaney, R. A. Dluhy, and Y. P. Zhao, Aligned silver nanorod arrays as substrates for surface-enhanced infrared absorption spectroscopy, Appl. Spectrosc. , 2006, 60(8): 90610.1366/000370206778062084
[57] J. L. Abell, J. M. Garren, and Y. P. Zhao, Dynamic rastering surface-enhanced Raman scattering (SERS) measurements on silver nanorod substrates, Appl. Spectrosc. , 2011, 65(7): 73410.1366/11-06264
[58] C. M. Ruan, G. Eres, W. Wang, Z. Y. Zhang, and B. H. Gu, Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy, Langmuir , 2007, 23(10): 575710.1021/la0636356
[59] M. A. De Jesús, K. S. Giesfeldt, J. M. Oran, N. A. Abu-Hatab, N. V. Lavrik, and M. J. Sepaniak, Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry, Appl. Spectrosc. , 2005, 59(12): 150110.1366/000370205775142557
[60] Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, Arrays of aligned, single crystalline silver nanorods for trace amount detection, J. Phys. D , 2008, 41(15): 15200710.1088/0022-3727/41/15/152007
[61] L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, Designing, fabricating, and imaging Raman hot spots, Proc. Natl. Acad. Sci. USA , 2006, 103(36): 1330010.1073/pnas.0605889103
[62] S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, and R. P. Van Duyne, Creating, characterizing, and controlling chemistry with SERS hot spots, Phys. Chem. Chem. Phys. , 2013, 15(1): 2110.1039/c2cp42598j
[63] Y. Nishikawa, T. Nagasawa, K. Fujiwara, and M. Osawa, Silver island films for surface-enhanced infrared absorption spectroscopy: Effect of island morphology on the absorption enhancement, Vib. Spectrosc. , 1993, 6(1): 4310.1016/0924-2031(93)87021-K
[64] M. Osawa and M. Ikeda, Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms, J. Phys. Chem. , 1991, 95(24): 991410.1021/j100177a056
[65] Y. Nishikawa, K. Fujiwara, K. Ataka, and M. Osawa, Surface-enhanced infrared external reflection spectroscopy at low reflective surfaces and its application to surface analysis of semiconductors, glasses, and polymers, Anal. Chem. , 1993, 65(5): 55610.1021/ac00053a011
[66] J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. A. Zhang, R. Badugu, and J. Huang, Advances in surfaceenhanced fluorescence, J. Fluoresc. , 2004, 14(4): 42510.1023/B:JOFL.0000031824.48401.5c
[67] I. Abdulhalim, A. Karabchevsky, C. Patzig, B. Rauschenbach, B. Fuhrmann, E. Eltzov, R. Marks, J. Xu, F. Zhang, and A. Lakhtakia, Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water, Appl. Phys. Lett. , 2009, 94(6): 06310610.1063/1.3081031
[68] H. R. Stuart and D. G. Hall, Enhanced dipole-dipole interaction between elementary radiators near a surface, Phys. Rev. Lett. , 1998, 80(25): 566310.1103/PhysRevLett.80.5663
[69] W. J. Padilla, D. N. Basov, and D. R. Smith, Negative refractive index metamaterials, Mater. Today , 2006, 9(7-8): 2810.1016/S1369-7021(06)71573-5
[70] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech. , 1999, 47(11): 207510.1109/22.798002
[71] S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J.Brueck, Experimental demonstration of near-infrared negative-index metamaterials, Phys. Rev. Lett. , 2005, 95(13): 13740410.1103/PhysRevLett.95.137404
[72] J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, Optical negative refraction in bulk metamaterials of nanowires, Science , 2008, 321(5891): 93010.1126/science.1157566
[73] Y. J. Jen, C. H. Chen, and C. W. Yu, Deposited metamaterial thin film with negative refractive index and permeability in the visible regime, Opt. Lett. , 2011, 36(6): 101410.1364/OL.36.001014
[74] Y. J. Jen, A. Lakhtakia, C. W. Yu, and Y. H. Wang, Negative real parts of the equivalent permittivity, permeability, and refractive index of sculptured-nanorod arrays of silver, J. Vac. Sci. Technol. A , 2010, 28(5): 107810.1116/1.3456125
[75] A. N. Lagarkov and A. K. Sarychev, Electromagnetic properties of composites containing elongated conducting inclusions, Phys. Rev. B , 1996, 53(10): 631810.1103/PhysRevB.53.6318
[76] Y. J. Jen, A. Lakhtakia, C. W. Yu, J. J. Jhou, W. H. Wang, M. J. Lin, H. M. Wu, and H. S. Liao, Silver/silicon dioxide/ silver sandwich films in the blue-to-red spectral regime with negative-real refractive index, Appl. Phys. Lett. , 2011, 99(18): 18111710.1063/1.3658624
[77] E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Metamaterial with negative index due to chirality, Phys. Rev. B , 2009, 79(3): 03540710.1103/PhysRevB.79.035407
[78] A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, Optical manifestations of planar chirality, Phys. Rev. Lett. , 2003, 90(10): 10740410.1103/PhysRevLett.90.107404
[79] M. Decker, M. W. Klein, M. Wegener, and S. Linden, Circular dichroism of planar chiral magnetic metamaterials, Opt. Lett. , 2007, 32(7): 85610.1364/OL.32.000856
[80] A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure, Phys. Rev. Lett. , 2006, 97(17): 17740110.1103/PhysRevLett.97.177401
[81] M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, Strong optical activity from twisted-cross photonic metamaterials, Opt. Lett. , 2009, 34(16): 250110.1364/OL.34.002501
[82] M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Giant optical activity in quasi-two-dimensional planar nanostructures, Phys. Rev. Lett. , 2005, 95(22): 22740110.1103/PhysRevLett.95.227401
[83] M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, Twisted split-ring-resonator photonic metamaterial with huge optical activity, Opt. Lett. , 2010, 35(10): 159310.1364/OL.35.001593
[84] B. Gallas, K. Robbie, R. Abdedda?m, G. Guida, J. Yang, J. Rivory, and A. Priou, Silver square nanospirals mimic optical properties of U-shaped metamaterials, Opt. Express , 2010, 18(16): 1633510.1364/OE.18.016335
[85] B. Gallas, N. Guth, J. Rivory, H. Arwin, R. Magnusson, G. Guida, J. Yang, and K. Robbie, Nanostructured chiral silver thin films: A route to metamaterials at optical frequencies, Thin Solid Films , 2011, 519(9): 265010.1016/j.tsf.2010.12.078
AI Summary AI Mindmap
PDF(798 KB)

Accesses

Citations

Detail

Sections
Recommended

/