Experimental detection of quantum entanglement
Ming Li, Ming-Jing Zhao, Shao-Ming Fei, Zhi-Xi Wang
Experimental detection of quantum entanglement
In this review, we introduce some methods for detecting or measuring entanglement. Several nonlinear entanglement witnesses are presented. We derive a series of Bell inequalities whose maximally violations for any multipartite qubit states can be calculated by using our formulas. Both the nonlinear entanglement witnesses and the Bell inequalities can be operated experimentally. Thus they supply an effective way for detecting entanglement. We also introduce some experimental methods to measure the entanglement of formation, and the lower bound of the convex-roof extension of negativity.
quantum entanglement / Bell-type inequality / entanglement detection
[1] |
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
|
[2] |
See, for example, D. P. DiVincenzo, Quantum computation, Science, 1995, 270(5234): 255
CrossRef
ADS
Google scholar
|
[3] |
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett., 1993, 70(13): 1895
CrossRef
ADS
Pubmed
Google scholar
|
[4] |
S. Albeberio and S. M. Fei, Teleportation of general finitedimensional quantum systems, Phys. Lett. A, 2000, 276(1–4): 8
CrossRef
ADS
Google scholar
|
[5] |
G. M. D’Ariano, P. Lo Presti, and M. F. Sacchi, Bell measurements and observables, Phys . Lett. A, 2000, 272(1–2):32
CrossRef
ADS
Google scholar
|
[6] |
S. Albeverio, S. M. Fei, and Y. L. Yang, Optimal teleportation based on bell measurements, Phys. Rev. A, 2002, 66(1):012301
CrossRef
ADS
Google scholar
|
[7] |
C. H. Bennett and S. J. Wiesner, Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states, Phys. Rev. Lett., 1992, 69(20): 2881
CrossRef
ADS
Pubmed
Google scholar
|
[8] |
A. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett., 1991, 67(6): 661
CrossRef
ADS
Pubmed
Google scholar
|
[9] |
D. Deutsch, A. Ekert, P. Rozas, C. Macchicavello, S. Popescu, and A. Sanpera, Quantum privacy amplification and the security of quantum cryptography over noisy channels, Phys. Rev. Lett., 1996, 77(13): 2818
CrossRef
ADS
Pubmed
Google scholar
|
[10] |
C. A. Fuchs, N. Gisin, R. B. Griffiths, Chi-Sheng Niu, and A. Peres, Optimal eavesdropping in quantum cryptography (I): Information bound and optimal strategy, Phys. Rev. A, 1997, 56(2): 1163
CrossRef
ADS
Google scholar
|
[11] |
M. Malik, O. S. Magana-Loaiza, and R. W. Boyd, Quantumsecured imaging, A ppl. Phys. Lett ., 2012, 101(24): 241103
|
[12] |
M. ˙Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors” Bell experiment via entanglement swapping, Phys. Rev. Lett., 1993, 71(26): 4287
|
[13] |
S. Bose, V. Vedral, and P. L. Knight, Multiparticle generalization of entanglement swapping, Phys. Rev. A , 1998, 57(2): 822
CrossRef
ADS
Google scholar
|
[14] |
S. Bose, V. Vedral, and P. L. Knight, Purification via entanglement swapping and conserved entanglement, Phys. Rev. A , 1999, 60(1): 194
CrossRef
ADS
Google scholar
|
[15] |
B. S. Shi, Y. K. Jiang, and G. C. Guo, Optimal entanglement purification via entanglement swapping, Phys. Rev. A, 2000, 62(5): 054301
CrossRef
ADS
Google scholar
|
[16] |
L. Hardy and D. D. Song, Entanglement-swapping chains for general pure states, Phys. Rev. A, 2000, 62(5): 052315
CrossRef
ADS
Google scholar
|
[17] |
C. H. Bennett, D. P. Di Vincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootter, Remote state preparation, Phys. Rev. Lett., 2001, 87(7): 077902
CrossRef
ADS
Google scholar
|
[18] |
B. S. Shi and A. Tomita, Remote state preparation of an entangled state, J. O pt . B, 2002, 4(6): 380
CrossRef
ADS
Google scholar
|
[19] |
J. M. Liu and Y. Z. Wang, Probabilistic remote state preparation by Wstates, Chinese Phys., 2004, 13(2): 147
CrossRef
ADS
Google scholar
|
[20] |
D. W. Leung and P. W. Shor, Oblivious remote state preparation,Phys. Rev. Lett., 2003, 90(12): 127905
CrossRef
ADS
Pubmed
Google scholar
|
[21] |
A. Abeyesinghe and P. Hayden, Generalized remote state preparation: Trading cbits, qubits, and ebits in quantum communication, Phys. Rev. A, 2003, 68(6): 062319
CrossRef
ADS
Google scholar
|
[22] |
A. Hayashi, T. Hashimoto, and P. Hayden, Remote state preparation without oblivious conditions, Phys. Rev. A, 2003, 67(5): 052302
CrossRef
ADS
Google scholar
|
[23] |
M. G. A. Paris, M. Cola, and R. Bonifacio, Remote state preparation and teleportation in phase space, J.Opt. B, 2003, 5(3): S360
CrossRef
ADS
Google scholar
|
[24] |
P. Agrawal, P. Parashar, and A. K. Pati, Exact remote state preparation for multiparties using dark states, Int . J. Quant. Info., 2003, 1(03): 301
CrossRef
ADS
Google scholar
|
[25] |
D. W. Berry and B. C. Sanders, Optimal remote state preparation, Phys. Rev. Lett., 2003, 90(5): 057901
|
[26] |
S. A. Babichev, B. Brezger, and A. I. Lvovsky, Remote preparation of a single-mode photonic qubit by measuring field quadrature noise, Phys. Rev. Lett., 2004, 92(4): 047903
|
[27] |
M. Y. Ye, Y. S. Zhang, and G. C. Guo, Faithful remote state preparation using finite classical bits and a nonmaximally entangled state, Phys. Rev. A, 2004, 69(2): 022310
|
[28] |
M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A, 1996, 223(1–2): 1
|
[29] |
B. M. Terhal, Bell inequalities and the separability criterion, Phys. Lett. A, 2000, 271(5–6): 319
|
[30] |
B. M. Terhal, Detecting quantum entanglement, Theor. Comput. Sci., 2002, 287(1): 313
|
[31] |
G. Tth and O. Ghne, Detecting genuine multipartite entanglement with two local measurements, Phys. Rev. Lett., 2005, 94(6): 060501
|
[32] |
D. Chruscinski and J. Pytel, Constructing optimal entanglement witnesses (II): Witnessing entanglement in 4N × 4N systems, Phys. Rev. A, 2010, 82(5): 052310
|
[33] |
S.X.Yu, J. W. Pan, Z. B. Chen, and Y. D. Zhang, Comprehensive test of entanglement for two-level systems via the indeterminacy relationship, Phys. Rev. Lett., 2003, 91(21): 217903
|
[34] |
J. S. Bell, On the Einstein–Podolsky–Rosen paradox, Physics, 1964, 1: 195
|
[35] |
N. Gisin, Bell’s inequality holds for all non-product states, Phys. Lett. A, 1991, 154(5–6): 201
|
[36] |
N. Gisin and A. Peres, Maximal violation of Bell’s inequality for arbitrarily large spin, Phys. Lett. A, 1992, 162(1): 15
|
[37] |
J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett., 1969, 23(15): 880
|
[38] |
N. D. Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states, Phys. Rev. Lett., 1990, 65(15): 1838
|
[39] |
M. Ardehali, Bell inequalities with a magnitude of violation that grows exponentially with the number of particles, Phys. Rev. A, 1992, 46(9): 5375
|
[40] |
A. V. Belinskii and D. N. Klyshko, Interference of light and Bell’s theorem, Phys . U sp., 1993, 36(8): 653
|
[41] |
M. Li and S. M. Fei, Gisin’s theorem for arbitrary dimensional multipartite states, Phys. Rev. Lett., 2010, 104(24): 240502
|
[42] |
C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A, 1996, 54(5): 3824
|
[43] |
C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A, 1996, 53(4): 2406
|
[44] |
V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Quantifying entanglement, Phys. Rev. Lett. , 1997, 78(12): 2275
|
[45] |
V. Vedral, M. B. Plenio, K. Jacobs, and P. L. Knight, Statistical inference, distinguishability of quantum states, and quantum entanglement, Phys. Rev. A, 1997, 56(6): 4452
|
[46] |
V. Vedral and M. B. Plenio, Entanglement measures and purification procedures, Phys. Rev. A, 1998, 57(3): 1619
|
[47] |
K.˙Zyczkowski and P. Horodecki, Volume of the set of separable states, Phys. Rev. A, 1998, 58(2): 883
|
[48] |
B. Schumacher and M. D. Westmoreland, Relative entropy in quantum information theory, arXiv: quant-ph/0004045
|
[49] |
M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature? Phys. Rev. Lett., 1998, 80(24): 5239
|
[50] |
E. M. Rains, A semidefinite program for distillable entanglement, IEEE Trans. Inf . Theory , 2001, 47(7): 2921
|
[51] |
R. F. Werner and M. M. Wolf, Bell’s inequalities for states with positive partial transpose, Phys. Rev. A, 2000, 61(6): 062102
|
[52] |
B. M. Terhal, K. Gerd, and K. G. H. Vollbrecht, Entanglement of Formation for Isotropic States, Phys. Rev. Lett., 2000, 85(12): 2625
|
[53] |
S. Hill and W. K. Wootters, Entanglement of a pair of quantum bits, Phys. Rev. Lett., 1997, 78(26): 5022
|
[54] |
W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett., 1998, 80(10): 2245
|
[55] |
A. Peres, Separability criterion for density matrices, Phys . Rev. Lett., 1996, 76(8): 1413
|
[56] |
S. Lee, D. P. Chi, S. D. Oh, and J. Kim, Convex-roof extended negativity as an entanglement measure for bipartite quantum systems, Phys. Rev. A, 2003, 68(6): 062304
|
[57] |
N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, Measuring entangled qutrits and their use for quantum bit commitment, Phys. Rev. Lett., 2004, 93(5): 053601
|
[58] |
G. Molina-Terriza, A. Vaziri, J. Řehǎček, Z. Hradil, and A. Zeilinger, Triggered qutrits for quantum communication protocols, Phys. Rev. Lett., 2004, 92(16): 167903
|
[59] |
S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, Experimental quantum cryptography with qutrits, New J. Phys., 2006, 8: 75
|
[60] |
D. Bruss and C. Macchiavello, Optimal eavesdropping in cryptography with three-dimensional quantum states, Phys . Rev. Lett., 2002, 88(12): 127901
|
[61] |
N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security of quantum key distribution using d-level systems, Phys. Rev. Lett., 2002, 88(12): 127902
|
[62] |
M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, Exceeding the classical capacity limit in a quantum optical channel, Phys. Rev. Lett., 2003, 90(16): 167906
|
[63] |
D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, Bell inequalities for arbitrarily high-dimensional systems, Phys. Rev. Lett., 2002, 88(4): 040404
|
[64] |
T. C. Ralph, K. Resch, and A. Gilchrist, Efficient Toffoli gates using qudits, Phys. Rev. A, 2007, 75(2): 022313
|
[65] |
B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, Manipulating biphotonic qutrits, Phys. Rev. Lett., 2008, 100(6): 060504
|
[66] |
K. Ann and G. Jaeger, Entanglement sudden death in qubitqutrit systems, Phys . Lett . A, 2008, 372(5): 579
|
[67] |
F. Mintert, M. Kuś, and A. Buchleitner, Concurrence of mixed multipartite quantum states, Phys. Rev. Lett., 2005, 95(26): 260502
|
[68] |
S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich, F. Mintert, and A. Buchleitner, Experimental determination of entanglement with a single measurement, Nature, 2006, 440(7087): 20
|
[69] |
S. P. Walborn, P. H. Souto Ribeiro, and L. Davidovich, Experimental determination of entanglement by a projective measurement, Phys. Rev. A, 2007, 75(3): 032338
|
[70] |
S. M. Fei, M. J. Zhao, K. Chen, and Z. X. Wang, Experimental determination of entanglement for arbitrary pure states, Phys. Rev. A, 2009, 80(3): 032320
|
[71] |
P. Horodecki, M. Lewenstein, G. Vidal, and I. Cirac, Operational criterion and constructive checks for the separability of low-rank density matrices, Phys. Rev. A, 2000, 62(3): 032310
|
[72] |
B. Kraus, J. I. Cirac, S. Karnas, and M. Lewenstein, Separability in 2 × Ncomposite quantum systems, Phys. Rev. A, 2000, 61(6): 062302
|
[73] |
B. Bylicka and D. Chruściński, Witnessing quantum discord in 2 × N systems, Phys. Rev. A, 2010, 81(6): 062102
|
[74] |
P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition, Phys . Lett . A, 1997, 232(5): 333
|
[75] |
C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Unextendible product bases and bound entanglement, Phys. Rev. Lett., 1999, 82(26): 5385
|
[76] |
K. Chen, and L. A. Wu, A matrix realignment method for recognizing entanglement, Quant. Inf. Comput ., 2003, 3: 193
|
[77] |
P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition, Phys . Lett . A, 1997, 232(5): 333
|
[78] |
M. Horodecki, and P. Horodecki, Reduction criterion of separability and limits for a class of distillation protocols, Phys. Rev. A, 1999, 59(6): 4206
|
[79] |
K. Chen, S. Albeverio, and S. M. Fei, Two-setting Bell inequalities for many qubits, Phys. Rev. A, 2006, 74(5): 050101
|
[80] |
R. Horodecki, P. Horodecki, and M. Horodecki, Violating Bell inequality by mixed states: Necessary and sufficient condition, Phys. Lett. A, 1995, 200(5): 340
|
[81] |
R. F. Werner and M. M. Wolf, All-multipartite Bellcorrelation inequalities for two dichotomic observables per site, Phys. Rev. A, 2001, 64(3): 032112
|
[82] |
M. ˙Zukowski and Ĉ. Brukner, Bell’s Theorem for General N-Qubit States, Phys. Rev. Lett., 2002, 88(21): 210401
|
[83] |
B. Z. Sun and S. M. Fei, Bell inequalities classifying biseparable three-qubit states, Phys. Rev. A, 2006, 74(3): 032335
|
[84] |
M. ˙Zukowski, Ĉ. Brukner, W. Laskowski, and M. Wieśniak, Do all pure entangled states violate Bell’s inequalities for correlation functions? Phys. Rev. Lett., 2002, 88(21): 210402
|
[85] |
C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A, 1996, 54(5): 3824
|
[86] |
C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A, 1996, 53(4): 2046
|
[87] |
V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Quantifying Entanglement, Phys. Rev. Lett., 1997, 78(12): 2275
|
[88] |
W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett., 1998, 80(10): 2245
|
[89] |
S. M. Fei, J. Jost, X. Q. Li-Jost, and G. F. Wang, Entanglement of formation for a class of quantum states, Phys.Lett. A , 2003, 310(5–6): 333
|
[90] |
S. M. Fei and X. Q. Li-Jost, A class of special matrices and quantum entanglement, Re p. M at h. Phys., 2004, 53(2): 195
|
[91] |
S. M. Fei, Z. X. Wang, and H. Zhao, A note on entanglement of formation and generalized concurrence, Phys. Lett. A , 2004, 329(6): 414
|
[92] |
G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A, 2002, 65(3): 032314
|
[93] |
F. Verstraete, K. Audenaert, J. Dehaene, and B. D. Moor, A comparison of the entanglement measures negativity and concurrence, J. Phys . A, 2001, 34(47): 10327
|
[94] |
F. Z. Shi, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. H. Peng, J. Kniepert, R.-S. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, Room-temperature implementation of the Deutsch–Jozsa algorithm with a single electronic spin in diamond, Phys. Rev. Lett., 2010, 105(4): 040504
|
[95] |
J. F. Du, N. Y. Xu, X. H. Peng, P. F. Wang, S. F. Wu, and D. W. Lu, NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation, Phys . Rev. Lett., 2010, 104(3): 030502
|
[96] |
B. M. Terhal and K. G. H. Vollbrecht, Entanglement of formation for isotropic states, Phys. Rev. Lett., 2000, 85(12): 2625
|
[97] |
K. G. H. Vollbrecht and R. F. Werner, Entanglement measures under symmetry, Phys. Rev. A, 2001, 64(6): 062307
CrossRef
ADS
Google scholar
|
[98] |
K. Chen, S. Albeverio, and S. M. Fei, Entanglement of formation of bipartite quantum states, Phys. Rev. Lett., 2005, 95(21): 210501
|
[99] |
M. Li and S. M. Fei, Measurable bounds for entanglement of formation, Phys. Rev. A, 2010, 82(4): 044303
CrossRef
ADS
Google scholar
|
[100] |
X. N. Zhu and S. M. Fei, Improved lower and upper bounds for entanglement of formation, Phys. Rev. A, 2012, 86(5): 054301
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |