Three-dimensional Wentzel–Kramers–Brillouin approach for the simulation of scanning tunneling microscopy and spectroscopy

Krisztián Palotás, Gábor Mándi, Werner A. Hofer

PDF(1432 KB)
PDF(1432 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (6) : 711-747. DOI: 10.1007/s11467-013-0354-4
REVIEW ARTICLE
REVIEW ARTICLE

Three-dimensional Wentzel–Kramers–Brillouin approach for the simulation of scanning tunneling microscopy and spectroscopy

Author information +
History +

Abstract

We review the recently developed three-dimensional (3D) atom-superposition approach for simulating scanning tunneling microscopy (STM) and spectroscopy (STS) based on ab initio electronic structure data. In the method, contributions from individual electron tunneling transitions between the tip apex atom and each of the sample surface atoms are summed up assuming the one-dimensional (1D) Wentzel–Kramers–Brillouin (WKB) approximation in all these transitions. This 3D WKB tunneling model is extremely suitable to simulate spin-polarized STM and STS on surfaces exhibiting a complex noncollinear magnetic structure, i.e., without a global spin quantization axis, at very low computational cost. The tip electronic structure from first principles can also be incorporated into the model, that is often assumed to be constant in energy in the vast majority of the related literature, which could lead to a misinterpretation of experimental findings. Using this approach, we highlight some of the electron tunneling features on a prototype frustrated hexagonal antiferromagnetic Cr monolayer on Ag(111) surface. We obtain useful theoretical insights into the simulated quantities that is expected to help the correct evaluation of experimental results. By extending the method to incorporate a simple orbital dependent electron tunneling transmission, we reinvestigate the bias voltage- and tip-dependent contrast inversion effect on theW(110) surface. STM images calculated using this orbital dependent model agree reasonably well with Tersoff-Hamann and Bardeen results. The computational efficiency of the model is remarkable as the k-point samplings of the surface and tip Brillouin zones do not affect the computational time, in contrast to the Bardeen method. In a certain case we obtain a relative computational time gain of 8500 compared to the Bardeen calculation, without the loss of quality. We discuss the advantages and limitations of the 3D WKB method, and show further ways to improve and extend it.

Graphical abstract

Keywords

electron tunneling / STM / STS / WKB / tunneling transmission / spin polarization / metal surfaces / contrast inversion

Cite this article

Download citation ▾
Krisztián Palotás, Gábor Mándi, Werner A. Hofer. Three-dimensional Wentzel–Kramers–Brillouin approach for the simulation of scanning tunneling microscopy and spectroscopy. Front. Phys., 2014, 9(6): 711‒747 https://doi.org/10.1007/s11467-013-0354-4

References

[1]
G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Tunneling through a controllable vacuum gap, Appl. Phys. Lett., 1982, 40(2): 178
CrossRef ADS Google scholar
[2]
G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Surface studies by scanning tunneling microscopy, Phys. Rev. Lett., 1982, 49(1): 57
CrossRef ADS Google scholar
[3]
W. A. Hofer, A. S. Foster, and A. L. Shluger, Theories of scanning probe microscopes at the atomic scale, Rev. Mod. Phys., 2003, 75(4): 1287
CrossRef ADS Google scholar
[4]
W. A. Hofer, Challenges and errors: Interpreting high resolution images in scanning tunneling microscopy, Prog. Surf. Sci., 2003, 71(5-8): 147
CrossRef ADS Google scholar
[5]
V. A. Ukraintsev, Data evaluation technique for electrontunneling spectroscopy, Phys. Rev. B, 1996, 53(16): 11176
CrossRef ADS Google scholar
[6]
B. Koslowski, C. Dietrich, A. Tschetschetkin, and P. Ziemann, Evaluation of scanning tunneling spectroscopy data: Approaching a quantitative determination of the electronic density of states, Phys. Rev. B, 2007, 75(3): 035421
CrossRef ADS Google scholar
[7]
M. Passoni, F. Donati, A. Li Bassi, C. S. Casari, and C. E. Bottani, Recovery of local density of states using scanning tunneling spectroscopy, Phys. Rev. B, 2009, 79(4): 045404
CrossRef ADS Google scholar
[8]
M. Ziegler, N. Néel, A. Sperl, J. Kröger, and R. Berndt, Local density of states from constant-current tunneling spectra, Phys. Rev. B, 2009, 80(12): 125402
CrossRef ADS Google scholar
[9]
B. Koslowski, H. Pfeifer, and P. Ziemann, Deconvolution of the electronic density of states of tip and sample from scanning tunneling spectroscopy data: Proof of principle, Phys. Rev. B, 2009, 80(16): 165419
CrossRef ADS Google scholar
[10]
K. Palotás, W. A. Hofer, and L. Szunyogh, Simulation of spin-polarized scanning tunneling spectroscopy on complex magnetic surfaces: Case of a Cr monolayer on Ag(111), Phys. Rev. B, 2012, 85(20): 205427
CrossRef ADS Google scholar
[11]
M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 2002, 65(16): 165401
CrossRef ADS Google scholar
[12]
J. Tersoff and D. R. Hamann, Theory and application for the scanning tunneling microscope, Phys. Rev. Lett., 1983, 50(25): 1998
CrossRef ADS Google scholar
[13]
J. Tersoff and D. R. Hamann, Theory of the scanning tunneling microscope, Phys. Rev. B, 1985, 31(2): 805
CrossRef ADS Google scholar
[14]
J. Bardeen, Tunnelling from a many-particle point of view, Phys. Rev. Lett., 1961, 6(2): 57
CrossRef ADS Google scholar
[15]
D. Wortmann, S. Heinze, P. Kurz, G. Bihlmayer, and S. Blügel, Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy, Phys. Rev. Lett., 2001, 86(18): 4132
CrossRef ADS Google scholar
[16]
W. A. Hofer and A. Garcia-Lekue, Differential tunneling spectroscopy simulations: Imaging surface states, Phys. Rev. B, 2005, 71(8): 085401
CrossRef ADS Google scholar
[17]
T. Kwapiński and M. Jałochowski, Signature of tip electronic states on tunneling spectra, Surf. Sci., 2010, 604(19-20): 1752
CrossRef ADS Google scholar
[18]
H. Ness and F. Gautier, The electronic structure and stability of transition metal nanotips (I), J. Phys.: Condens. Matter, 1995, 7(33): 6625
CrossRef ADS Google scholar
[19]
H. Ness and F. Gautier, The electronic structure of transition metal interacting tip and sample and atomic force microscopy (II), J. Phys.: Condens. Matter, 1995, 7(33): 6641
CrossRef ADS Google scholar
[20]
H. Ness and F. Gautier, Theoretical study of the interaction between a magnetic nanotip and a magnetic surface, Phys. Rev. B, 1995, 52(10): 7352
CrossRef ADS Google scholar
[21]
C. J. Chen, Tunneling matrix elements in three-dimensional space: The derivative rule and the sum rule, Phys. Rev. B, 1990, 42(14): 8841
CrossRef ADS Google scholar
[22]
W. Sacks, Tip orbitals and the atomic corrugation of metal surfaces in scanning tunneling microscopy, Phys. Rev. B, 2000, 61(11): 7656
CrossRef ADS Google scholar
[23]
C. J. Chen, Effects of m ≠ 0 tip states in scanning tunneling microscopy: The explanations of corrugation reversal, Phys. Rev. Lett., 1992, 69(11): 1656
CrossRef ADS Google scholar
[24]
N. Mingo, L. Jurczyszyn, F. J. Garcia-Vidal, R. Saiz-Pardo, P. L. de Andres, F. Flores, S. Y. Wu, and W. More, Theory of the scanning tunneling microscope: Xe on Ni and Al, Phys. Rev. B, 1996, 54(3): 2225
CrossRef ADS Google scholar
[25]
F. Calleja, A. Arnau, J. J. Hinarejos, A. L. Vázquez de Parga, W. A. Hofer, P. M. Echenique, and R. Miranda, Contrast reversal and shape changes of atomic adsorbates measured with scanning tunneling microscopy, Phys. Rev. Lett., 2004, 92(20): 206101
CrossRef ADS Google scholar
[26]
G. Teobaldi, M. Peñalba, A. Arnau, N. Lorente, and W. A. Hofer, Including the probe tip in theoretical models of inelastic scanning tunneling spectroscopy: CO on Cu(100), Phys. Rev. B, 2007, 76(23): 235407
CrossRef ADS Google scholar
[27]
A. Garcia-Lekue, D. Sanchez-Portal, A. Arnau, and T. Frederiksen, Simulation of inelastic electron tunneling spectroscopy of single molecules with functionalized tips, Phys. Rev. B, 2011, 83(15): 155417
CrossRef ADS Google scholar
[28]
L. Vitali, S. D. Borisova, G. G. Rusina, E. V. Chulkov, and K. Kern, Inelastic electron tunneling spectroscopy: A route to the identification of the tip-apex structure, Phys. Rev. B, 2010, 81(15): 153409
CrossRef ADS Google scholar
[29]
C. Sirvent, J. G. Rodrigo, S. Vieira, L. Jurczyszyn, N. Mingo, and F. Flores, Conductance step for a single-atom contact in the scanning tunneling microscope: Noble and transition metals, Phys. Rev. B, 1996, 53(23): 16086
CrossRef ADS Google scholar
[30]
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B, 1985, 31(10): 6207
CrossRef ADS Google scholar
[31]
J. Cerdá, M. A. Van Hove, P. Sautet, and M. Salmeron, Efficient method for the simulation of STM images (I): Generalized Green-function formalism, Phys. Rev. B, 1997, 56(24): 15885
CrossRef ADS Google scholar
[32]
M. Brandbyge, M. R. Sorensen, and K. W. Jacobsen, Conductance eigenchannels in nanocontacts, Phys. Rev. B, 1997, 56(23): 14956
CrossRef ADS Google scholar
[33]
M. Brandbyge, N. Kobayashi, and M. Tsukada, Conduction channels at finite bias in single-atom gold contacts, Phys. Rev. B, 1999, 60(24): 17064
CrossRef ADS Google scholar
[34]
A. Bagrets, N. Papanikolaou, and I. Mertig, Ab initio approach to the ballistic transport through single atoms, Phys. Rev. B, 2006, 73(4): 045428
CrossRef ADS Google scholar
[35]
A. Bagrets, N. Papanikolaou, and I. Mertig, Conduction eigenchannels of atomic-sized contacts: Ab initio KKR Green’s function formalism, Phys. Rev. B, 2007, 75(23): 235448
CrossRef ADS Google scholar
[36]
M. Polok, A. Bagrets, D. V. Fedorov, P. Zahn, and I. Mertig, Evaluation of conduction eigenchannels of an adatom probed by an STM tip, Phys. Rev. B, 2011, 83(24): 245426
CrossRef ADS Google scholar
[37]
E. M. L. Plumer, J. van Ek, and D. Weller, The Physics of Ultra-High Density Magnetic Recording, Springer Series in Surface Science Vol. 41, Berlin: Springer, 2001
[38]
N. Weiss, T. Cren, M. Epple, S. Rusponi, G. Baudot, S. Rohart, A. Tejeda, V. Repain, S. Rousset, P. Ohresser, F. Scheurer, P. Bencok, and H. Brune, Uniform magnetic properties for an ultrahigh-density lattice of noninteracting co nanostructures, Phys. Rev. Lett., 2005, 95(15): 157204
CrossRef ADS Google scholar
[39]
D. Serrate, P. Ferriani, Y. Yoshida, S. W. Hla, M. Menzel, K. von Bergmann, S. Heinze, A. Kubetzka, and R. Wiesendanger, Imaging and manipulating the spin direction of individual atoms, Nat. Nanotechnol., 2010, 5(5): 350
CrossRef ADS Google scholar
[40]
K. Tao, V. S. Stepanyuk, W. Hergert, I. Rungger, S. Sanvito, and P. Bruno, Switching a single spin on metal surfaces by a STM tip: Ab initio studies, Phys. Rev. Lett., 2009, 103(5): 057202
CrossRef ADS Google scholar
[41]
M. Bode, Spin-polarized scanning tunnelling microscopy, Rep. Prog. Phys., 2003, 66(4): 523
CrossRef ADS Google scholar
[42]
R. Wiesendanger, Spin mapping at the nanoscale and atomic scale, Rev. Mod. Phys., 2009, 81(4): 1495
CrossRef ADS Google scholar
[43]
W. Wulfhekel and C. L. Gao, Investigation of non-collinear spin states with scanning tunneling microscopy, J. Phys.: Condens. Matter, 2010, 22(8): 084021
CrossRef ADS Google scholar
[44]
M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger, Chiral magnetic order at surfaces driven by inversion asymmetry, Nature, 2007, 447(7141): 190
CrossRef ADS Google scholar
[45]
C. L. Gao, W. Wulfhekel, and J. Kirschner, Revealing the 120° antiferromagnetic Néel structure in real space: One monolayer Mn on Ag(111), Phys. Rev. Lett., 2008, 101(26): 267205
CrossRef ADS Google scholar
[46]
M. Waśniowska, S. Schröder, P. Ferriani, and S. Heinze, Real space observation of spin frustration in Cr on a triangular lattice, Phys. Rev. B, 2010, 82(1): 012402
CrossRef ADS Google scholar
[47]
S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nat. Phys., 2011, 7(9): 713
CrossRef ADS Google scholar
[48]
M. Takada, P. L. Gastelois, M. Przybylski, and J. Kirschner, A complex magnetic structure of ultrathin Fe films on Rh (001) surfaces, J. Magn. Magn. Mater., 2013, 329: 95
CrossRef ADS Google scholar
[49]
P. Ferriani, K. von Bergmann, E. Y. Vedmedenko, S. Heinze, M. Bode, M. Heide, G. Bihlmayer, S. Blügel, and R. Wiesendanger, Atomic-scale spin spiral with a unique rotational sense: Mn monolayer on W(001), Phys. Rev. Lett., 2008, 101(2): 027201
CrossRef ADS Google scholar
[50]
J. Kudrnovský, F. Máca, I. Turek, and J. Redinger, Substrate-induced antiferromagnetism of a Fe monolayer on the Ir(001) surface, Phys. Rev. B, 2009, 80(6): 064405
CrossRef ADS Google scholar
[51]
A. Deák, L. Szunyogh, and B. Újfalussy, Thicknessdependent magnetic structure of ultrathin Fe/Ir(001) films: From spin-spiral states toward ferromagnetic order, Phys. Rev. B, 2011, 84(22): 224413
CrossRef ADS Google scholar
[52]
L. Balogh, K. Palotás, L. Udvardi, L. Szunyogh, and U. Nowak, Theoretical study of magnetic domain walls through a cobalt nanocontact, Phys. Rev. B, 2012, 86(2): 024406
CrossRef ADS Google scholar
[53]
A. Antal, B. Lazarovits, L. Udvardi, L. Szunyogh, B. Újfalussy, and P. Weinberger, First-principles calculations of spin interactions and the magnetic ground states of Cr trimers on Au(111), Phys. Rev. B, 2008, 77(17): 174429
CrossRef ADS Google scholar
[54]
L. Udvardi, A. Antal, L. Szunyogh, Á. Buruzs, and P. Weinberger, Magnetic pattern formation on the nanoscale due to relativistic exchange interactions, Physica B, 2008, 403(2-3): 402
CrossRef ADS Google scholar
[55]
R. Yang, H. Yang, A. R. Smith, A. Dick, and J. Neugebauer, Energy-dependent contrast in atomic-scale spin-polarized scanning tunneling microscopy of Mn3N2 (010): Experiment and first-principles theory, Phys. Rev. B, 2006, 74(11): 115409
CrossRef ADS Google scholar
[56]
K. Palotás, W. A. Hofer, and L. Szunyogh, Simulation of spin-polarized scanning tunneling microscopy on complex magnetic surfaces: Case of a Cr monolayer on Ag(111), Phys. Rev. B, 2011, 84(17): 174428
CrossRef ADS Google scholar
[57]
K. Palotás, Prediction of the bias voltage dependent magnetic contrast in spin-polarized scanning tunneling microscopy, Phys. Rev. B, 2013, 87(2): 024417
CrossRef ADS Google scholar
[58]
W. A. Hofer, K. Palotás, S. Rusponi, T. Cren, and H. Brune, Role of hydrogen in giant spin polarization observed on magnetic nanostructures, Phys. Rev. Lett., 2008, 100(2): 026806
CrossRef ADS Google scholar
[59]
K. von Bergmann, M. Menzel, D. Serrate, Y. Yoshida, S. Schröder, P. Ferriani, A. Kubetzka, R. Wiesendanger, and S. Heinze, Tunneling anisotropic magnetoresistance on the atomic scale, Phys. Rev. B, 2012, 86(13): 134422
CrossRef ADS Google scholar
[60]
N. Néel, S. Schröder, N. Ruppelt, P. Ferriani, J. Kröger, R. Berndt, and S. Heinze, Tunneling anisotropic magnetoresistance at the single-atom limit, Phys. Rev. Lett., 2013, 110(3): 037202
CrossRef ADS Google scholar
[61]
N. Néel, J. Kröger, L. Limot, K. Palotá, W. A. Hofer, and R. Berndt, Conductance and Kondo effect in a controlled single-atom contact, Phys. Rev. Lett., 2007, 98(1): 016801
CrossRef ADS Google scholar
[62]
K. R. Patton, S. Kettemann, A. Zhuravlev, and A. Lichtenstein, Spin-polarized tunneling microscopy and the Kondo effect, Phys. Rev. B, 2007, 76(10): 100408
CrossRef ADS Google scholar
[63]
T. Uchihashi, J. Zhang, J. Kröger, and R. Berndt, Quantum modulation of the Kondo resonance of Co adatoms on Cu/Co/Cu(100): Low-temperature scanning tunneling spectroscopy study, Phys. Rev. B, 2008, 78(3): 033402
CrossRef ADS Google scholar
[64]
P. Roura-Bas, M. A. Barral, and A. M. Llois, Co impurities on Ag and Cu: Kondo temperature dependence on substrate orientation, Phys. Rev. B, 2009, 79(7): 075410
CrossRef ADS Google scholar
[65]
K. R. Patton, H. Hafermann, S. Brener, A. I. Lichtenstein, and M. I. Katsnelson, Probing the Kondo screening cloud via tunneling-current conductance fluctuations, Phys. Rev. B, 2009, 80(21): 212403
CrossRef ADS Google scholar
[66]
N. Néel, J. Kröger, and R. Berndt, Kondo effect of a Co atom on Cu(111) in contact with an iron tip, Phys. Rev. B, 2010, 82(23): 233401
CrossRef ADS Google scholar
[67]
D. J. Choi, M. V. Rastei, P. Simon, and L. Limot, Conductance-driven change of the Kondo effect in a single cobalt atom, Phys. Rev. Lett., 2012, 108(26): 266803
CrossRef ADS Google scholar
[68]
O. Újsághy, J. Kroha, L. Szunyogh, and A. Zawadowski, Theory of the Fano resonance in the stm tunneling density of states due to a single Kondo impurity, Phys. Rev. Lett., 2000, 85(12): 2557
CrossRef ADS Google scholar
[69]
L. Gao, W. Ji, Y. B. Hu, Z. H. Cheng, Z. T. Deng, Q. Liu, N. Jiang, X. Lin, W. Guo, S. X. Du, W. A. Hofer, X. C. Xie, and H. J. Gao, Site-specific Kondo effect at ambient temperatures in iron-based molecules, Phys. Rev. Lett., 2007, 99(10): 106402
CrossRef ADS Google scholar
[70]
J. A. Aguiar-Hualde, G. Chiappe, E. Louis, and E. V. Anda, Kondo effect in transport through molecules adsorbed on metal surfaces: From Fano dips to Kondo peaks, Phys. Rev. B, 2007, 76(15): 155427
CrossRef ADS Google scholar
[71]
J. A. Aguiar-Hualde, G. Chiappe, E. Louis, E. V. Anda, and J. Simonin, Kondo resonance in the conductance of CoPc/Au(111) and TBrPP-Co/Cu(111), Phys. Rev. B, 2009, 79(15): 155415
CrossRef ADS Google scholar
[72]
A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Fano resonances in nanoscale structures, Rev. Mod. Phys., 2010, 82(3): 2257
CrossRef ADS Google scholar
[73]
Y. Yayon, V. W. Brar, L. Senapati, S. C. Erwin, and M. F. Crommie, Observing spin polarization of individual magnetic adatoms, Phys. Rev. Lett., 2007, 99(6): 067202
CrossRef ADS Google scholar
[74]
B. W. Heinrich, C. Iacovita, M. V. Rastei, L. Limot, J. P. Bucher, P. A. Ignatiev, V. S. Stepanyuk, and P. Bruno, Spin structure of an atomic protrusion: Probing single atoms on cobalt nanoislands, Phys. Rev. B, 2009, 79(11): 113401
CrossRef ADS Google scholar
[75]
L. Zhou, F. Meier, J. Wiebe, and R. Wiesendanger, Inversion of spin polarization above individual magnetic adatoms, Phys. Rev. B, 2010, 82(1): 012409
CrossRef ADS Google scholar
[76]
P. Ferriani, C. Lazo, and S. Heinze, Origin of the spin polarization of magnetic scanning tunneling microscopy tips, Phys. Rev. B, 2010, 82(5): 054411
CrossRef ADS Google scholar
[77]
J. Wiebe, L. Zhou, and R. Wiesendanger, Atomic magnetism revealed by spin-resolved scanning tunnelling spectroscopy, J. Phys. D Appl. Phys., 2011, 44(46): 464009
CrossRef ADS Google scholar
[78]
M. Ternes, A. J. Heinrich, and W. D. Schneider, Spectroscopic manifestations of the Kondo effect on single adatoms, J. Phys.: Condens. Matter, 2009, 21(5): 053001
CrossRef ADS Google scholar
[79]
K. Schouteden, D. A. Muzychenko, and C. Van Haesendonck, Spin-polarized scanning tunneling spectroscopy of self-organized nanoscale Co islands on Au(111) surfaces, J. Nanosci. Nanotechnol., 2008, 8(7): 3616
CrossRef ADS Google scholar
[80]
K. Schouteden, E. Lijnen, E. Janssens, A. Ceulemans, L. F. Chibotaru, P. Lievens, and C. Van Haesendonck, Confinement of surface state electrons in self-organized Co islands on Au(111), New J. Phys., 2008, 10(4): 043016
CrossRef ADS Google scholar
[81]
K. Schouteden, D. A. Muzychenko, P. Lievens, and C. Van Haesendonck, Low-temperature scanning tunneling microscopy and spectroscopy investigation of the electronic surface state of self-organized Cr islands on Au(111), J. Nanosci. Nanotechnol., 2009, 9(11): 6767
CrossRef ADS Google scholar
[82]
K. Schouteden and C. Van Haesendonck, Narrow Au(111) terraces decorated by self-organized Co nanowires: A lowtemperature STM/STS investigation, J. Phys. Condens. Matter, 2010, 22(25): 255504
CrossRef ADS Google scholar
[83]
K. Schouteden, K. Lauwaet, D. A. Muzychenko, P. Lievens, and C. Van Haesendonck, Spin-dependent electronic structure of self-organized Co nanomagnets, New J. Phys., 2011, 13(3): 033030
CrossRef ADS Google scholar
[84]
A. A. Khajetoorians, J. Wiebe, B. Chilian, and R. Wiesendanger, Realizing all-spin-based logic operations atom by atom, Science, 2011, 332(6033): 1062
CrossRef ADS Google scholar
[85]
B. W. Heinrich, C. Iacovita, M. V. Rastei, L. Limot, P. A. Ignatiev, V. S. Stepanyuk, and J. P. Bucher, A spin-selective approach for surface states at Co nanoislands, Eur. Phys. J. B, 2010, 75(1): 49
CrossRef ADS Google scholar
[86]
M. Passoni and C. E. Bottani, Transfer Hamiltonian analytical theory of scanning tunneling spectroscopy, Phys. Rev. B, 2007, 76(11): 115404
CrossRef ADS Google scholar
[87]
F. Donati, S. Piccoli, C. E. Bottani, and M. Passoni, Threedimensional approach to scanning tunneling spectroscopy and application to Shockley states, New J. Phys., 2011, 13(5): 053058
CrossRef ADS Google scholar
[88]
G. Rodary, S. Wedekind, H. Oka, D. Sander, and J. Kirschner, Characterization of tips for spin-polarized scanning tunneling microscopy, Appl. Phys. Lett., 2009, 95(15): 152513
CrossRef ADS Google scholar
[89]
K. Palotás, W. A. Hofer, and L. Szunyogh, Theoretical study of the role of the tip in enhancing the sensitivity of differential conductance tunneling spectroscopy on magnetic surfaces, Phys. Rev. B, 2011, 83(21): 214410
CrossRef ADS Google scholar
[90]
S. Heinze, Simulation of spin-polarized scanning tunneling microscopy images of nanoscale non-collinear magnetic structures, Appl. Phys. A, 2006, 85(4): 407
CrossRef ADS Google scholar
[91]
K. Palotás, G. Mándi, and L. Szunyogh, Orbital-dependent electron tunneling within the atom superposition approach: Theory and application to W(110), Phys. Rev. B, 2012, 86(23): 235415
CrossRef ADS Google scholar
[92]
W. A. Hofer and A. J. Fisher, Simulation of spin-resolved scanning tunneling microscopy: influence of the magnetization of surface and tip, J. Magn. Magn. Mater., 2003, 267(2): 139
CrossRef ADS Google scholar
[93]
A. R. Smith, R. Yang, H. Yang, W. R. L. Lambrecht, A. Dick, and J. Neugebauer, Aspects of spin-polarized scanning tunneling microscopy at the atomic scale: Experiment, theory, and simulation, Surf. Sci., 2004, 561(2-3): 154
CrossRef ADS Google scholar
[94]
H. Yang, A. R. Smith, M. Prikhodko, and W. R. L. Lambrecht, Atomic-Scale Spin-Polarized Scanning Tunneling Microscopy Applied to Mn3N2(010), Phys. Rev. Lett., 2002, 89(22): 226101
CrossRef ADS Google scholar
[95]
N. D. Lang, Spectroscopy of single atoms in the scanning tunneling microscope, Phys. Rev. B, 1986, 34(8): 5947
CrossRef ADS Google scholar
[96]
M. Becker and R. Berndt, Influence of band structure on the apparent barrier height in scanning tunneling microscopy, Phys. Rev. B, 2010, 81(3): 035426
CrossRef ADS Google scholar
[97]
M. Becker, and R. Berndt, Contrast inversion of the apparent barrier height of Pb thin films in scanning tunneling microscopy, Appl. Phys. Lett., 2010, 96(3): 033112
CrossRef ADS Google scholar
[98]
W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Condens. Matter, 2009, 21(8): 084204
CrossRef ADS Google scholar
[99]
C. J. Chen, Introduction to Scanning Tunneling Microscopy, Chapter 6, Oxford: Oxford University Press, 1993
[100]
H. F. Ding, W. Wulfhekel, J. Henk, P. Bruno, and J. Kirschner, Absence of zero-bias anomaly in spin-polarized vacuum tunneling in Co(0001), Phys. Rev. Lett., 2003, 90(11): 116603
CrossRef ADS Google scholar
[101]
A. Tange, C. L. Gao, B. Y. Yavorsky, I. V. Maznichenko, C. Etz, A. Ernst, W. Hergert, I. Mertig, W. Wulfhekel, and J. Kirschner, Electronic structure and spin polarization of the Fe(001)-p(1×1)O surface, Phys. Rev. B, 2010, 81(19): 195410
CrossRef ADS Google scholar
[102]
W. Krenner, D. Kühne, F. Klappenberger, and J. V. Barth, Assessment of scanning tunneling spectroscopy modes inspecting electron confinement in surface-confined supramolecular networks, Scientific Reports, 2013, 3: 1454
CrossRef ADS Google scholar
[103]
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 1996, 6(1): 15
CrossRef ADS Google scholar
[104]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[105]
J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond, J. Comput. Chem., 2008, 29(13): 2044
CrossRef ADS Google scholar
[106]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 1999, 59(3): 1758
CrossRef ADS Google scholar
[107]
J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 1992, 45(23): 13244
CrossRef ADS Google scholar
[108]
D. Hobbs, G. Kresse, and J. Hafner, Fully unconstrained noncollinear magnetism within the projector augmentedwave method, Phys. Rev. B, 2000, 62(17): 11556
CrossRef ADS Google scholar
[109]
D. Hobbs and J. Hafner, Fully unconstrained non-collinear magnetism in triangular Cr and Mn monolayers and overlayers on Cu(111) substrates, J. Phys.: Condens. Matter, 2000, 12(31): 7025
CrossRef ADS Google scholar
[110]
H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B, 1976, 13(12): 5188
CrossRef ADS Google scholar
[111]
A. Kubetzka, P. Ferriani, M. Bode, S. Heinze, G. Bihlmayer, K. von Bergmann, O. Pietzsch, S. Blügel, and R. Wiesendanger, Revealing antiferromagnetic order of the Fe monolayer on W(001): Spin-polarized scanning tunneling microscopy and first-principles calculations, Phys. Rev. Lett., 2005, 94(8): 087204
CrossRef ADS Google scholar
[112]
S. Heinze, S. Blügel, R. Pascal, M. Bode, and R. Wiesendanger, Prediction of bias-voltage-dependent corrugation reversal for STM images of bcc (110) surfaces: W(110), Ta(110), and Fe(110), Phys. Rev. B, 1998, 58(24): 16432
CrossRef ADS Google scholar
[113]
S. Heinze, X. Nie, S. Blügel, and M. Weinert, Electric-fieldinduced changes in scanning tunneling microscopy images of metal surfaces, Chem. Phys. Lett., 1999, 315(3-4): 167
CrossRef ADS Google scholar
[114]
G. Teobaldi, E. Inami, J. Kanasaki, K. Tanimura, and A. L. Shluger, Role of applied bias and tip electronic structure in the scanning tunneling microscopy imaging of highly oriented pyrolytic graphite, Phys. Rev. B, 2012, 85(8): 085433
CrossRef ADS Google scholar
[115]
K. Palotás, and W. A. Hofer, Multiple scattering in a vacuum barrier obtained from real-space wavefunctions, J. Phys.: Condens. Matter, 2005, 17(17): 2705
CrossRef ADS Google scholar
[116]
K. S. Wang, P. M. Levy, S. F. Zhang, and L. Szunyogh, On the calculation of the magnetoresistance of tunnel junctions with parallel paths of conduction, Philos. Mag. B, 2003, 83(10): 1255
CrossRef ADS Google scholar
[117]
M. Ondráček, C. González, and P. Jelínek, Reversal of atomic contrast in scanning probe microscopy on (111) metal surfaces, J. Phys.: Condens. Matter, 2012, 24(8): 084003
CrossRef ADS Google scholar
[118]
L. Szunyogh, B. Újfalussy, P. Weinberger, and J. Kollár, Selfconsistent localized KKR scheme for surfaces and interfaces, Phys. Rev. B, 1994, 49(4): 2721
CrossRef ADS Google scholar
[119]
R. Zeller, P. H. Dederichs, B. Újfalussy, L. Szunyogh, and P. Weinberger, Theory and convergence properties of the screened Korringa-Kohn-Rostoker method, Phys. Rev. B, 1995, 52(12): 8807
CrossRef ADS Google scholar
[120]
G. Rodary, J. C. Girard, L. Largeau, C. David, O. Mauguin, and Z. Z. Wang, Atomic structure of tip apex for spinpolarized scanning tunneling microscopy, Appl. Phys. Lett., 2011, 98(8): 082505
CrossRef ADS Google scholar
Funding
null

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1432 KB)

Accesses

Citations

Detail

Sections
Recommended

/