Electronic transport through tetrahedron-structured DNA-like system

Wei Zhu, Ai-Min Guo, Qing-Feng Sun

PDF(229 KB)
PDF(229 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (6) : 774-779. DOI: 10.1007/s11467-013-0353-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Electronic transport through tetrahedron-structured DNA-like system

Author information +
History +

Abstract

We theoretically investigate the electronic transport properties of a multi-terminal tetrahedronstructured DNA under a uniform magnetic field. Based on a tight-binding model, the current and nonlocal resistance are calculated under different situations by employing the Landauer–Büttiker formula. Our results indicate that the current displays a clear sign of interference in the presence of the magnetic field and can be mainly divided into three patterns, as demonstrated by the Fourier transformation. Furthermore, the tetrahedron-structured DNA can be used as a molecular switch. The underlying physical mechanisms are analyzed for the various phenomena observed in this threedimensional DNA interferometer.

Graphical abstract

Keywords

tetrahedron structure / interference / AB effect

Cite this article

Download citation ▾
Wei Zhu, Ai-Min Guo, Qing-Feng Sun. Electronic transport through tetrahedron-structured DNA-like system. Front. Phys., 2014, 9(6): 774‒779 https://doi.org/10.1007/s11467-013-0353-5

References

[1]
D. D. Eley and D. I. Spivey, Semiconductivity of organic substances. Part 9. Nucleic acid in the dry state, Trans. Faraday Soc., 1962, 58: 411
CrossRef ADS Google scholar
[2]
E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, DNAtemplated assembly and electrode attachment of a conducting silver wire, Nature, 1998, 391(6669): 775
CrossRef ADS Google scholar
[3]
P. J. de Pablo, F. Moreno-Herrero, J. Colchero, J. Gómez Herrero, P. Herrero, A. M. Baró, P. Ordejón, J. M. Soler, and E. Artacho, Absence of dc-conductivity in lambda-DNA, Phys. Rev. Lett., 2000, 85(23): 4992
CrossRef ADS Google scholar
[4]
A. J. Storm, J. van Noort, S. de Vries, and C. Dekker, Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale, Appl. Phys. Lett., 2001, 79(23): 3881
CrossRef ADS Google scholar
[5]
Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, Insulating behavior of lambda-DNA on the micron scale, Phys. Rev. Lett., 2002, 89(19): 198102
CrossRef ADS Google scholar
[6]
H. Cohen, C. Nogues, R. Naaman, and D. Porath, Direct measurement of electrical transport through single DNA molecules of complex sequence, Proc. Natl. Acad. Sci. USA, 2005, 102(33): 11589
CrossRef ADS Google scholar
[7]
M. S. Xu, R. G. Endres, S. Tsukamoto, M. Kitamura, S. Ishida, and Y. Arakawa, Conformation and local environment dependent conductance of DNA molecules, Small, 2005, 1(12): 1168
CrossRef ADS Google scholar
[8]
E. Shapir, H. Cohen, A. Calzolari, C. Cavazzoni, D. A. Ryndyk, G. Cuniberti, A. Kotlyar, R. Di Felice, and D. Porath, Electronic structure of single DNA molecules resolved by transverse scanning tunnelling spectroscopy, Nat. Mater., 2008, 7(1): 68
CrossRef ADS Google scholar
[9]
S. Roy, H. Vedala, A. D. Roy, D. H. Kim, M. Doud, K. Mathee, H. K. Shin, N. Shimamoto, V. Prasad, and W. Choi, Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes, Nano Lett., 2008, 8(1): 26
CrossRef ADS Google scholar
[10]
H. W. Fink and C. Schönenberger, Electrical conduction through DNA molecules, Nature, 1999, 398(6726): 407
CrossRef ADS Google scholar
[11]
P. Tran, B. Alavi, and G. Gruner, Charge transport along the lambda-DNA double helix, Phys. Rev. Lett., 2000, 85(7): 1564
CrossRef ADS Google scholar
[12]
L. Cai, H. Tabata, and T. Kawai, Probing electrical properties of oriented DNA by conducting atomic force microscopy, Nanotechnology, 2001, 12(3): 211
CrossRef ADS Google scholar
[13]
B. Xu, P. Zhang, X. Li, and N. Tao, Direct conductance measurement of single DNA molecules in aqueous solution, Nano Lett., 2004, 4(6): 1105
CrossRef ADS Google scholar
[14]
A. Y. Kasumov, M. Kociak, S. Guéron, B. Reulet, V. T. Volkov, D. V. Klinov, and H. Bouchiat, Proximity-induced superconductivity in DNA, Science, 2001, 291(5502): 280
CrossRef ADS Google scholar
[15]
R. G. Endres, D. L. Cox, and R. R. P. Singh, Colloquium: The quest for high-conductance DNA, Rev. Mod. Phys., 2004, 76(1): 195
CrossRef ADS Google scholar
[16]
J. D. Slinker, N. B. Muren, S. E. Renfrew, and J. K. Barton, DNA charge transport over 34 nm, Nat. Chem., 2011, 3(3): 228
CrossRef ADS Google scholar
[17]
B. Göhler, V. Hamelbeck, T. Z. Markus, M. Kettner, G. F. Hanne, Z. Vager, R. Naaman, and H. Zacharias, Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA, Science, 2011, 331(6019): 894
CrossRef ADS Google scholar
[18]
Z. Xie, T. Z. Markus, S. R. Cohen, Z. Vager, R. Gutierrez, and R. Naaman, Spin specific electron conduction through DNA oligomers, Nano Lett., 2011, 11(11): 4652
CrossRef ADS Google scholar
[19]
A. M. Guo and Q. F. Sun, Spin-selective transport of electrons in DNA double helix, Phys. Rev. Lett., 2012, 108(21): 218102
CrossRef ADS Google scholar
[20]
A. M. Guo and Q. F. Sun, Sequence-dependent spin-selective tunneling along double-stranded DNA, Phys. Rev. B, 2012, 86(11): 115441
CrossRef ADS Google scholar
[21]
A. M. Guo and Q. F. Sun, Enhanced spin-polarized transport through DNA double helix by gate voltage, Phys. Rev. B, 2012, 86(3): 035424
CrossRef ADS Google scholar
[22]
K. J. Cash, F. Ricci, and K. W. Plaxco, An electrochemical sensor for the detection of protein-small molecule interactions directly in serum and other complex matrices, J. Am. Chem. Soc., 2009, 131(20): 6955
CrossRef ADS Google scholar
[23]
A. A. Gorodetsky and J. K. Barton, Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite, Langmuir, 2006, 22(18): 7917
CrossRef ADS Google scholar
[24]
N. Lu, H. Pei, Z. L. Ge, C. R. Simmons, H. Yan, and C. H. Fan, Ch<?Pub Caret?>arge transport within a three-dimensional DNA nanostructure framework, J. Am. Chem. Soc., 2012, 134(32): 13148
CrossRef ADS Google scholar
[25]
R. P. Goodman, R. M. Berry, and A. J. Turberfield, The single-step synthesis of a DNA tetrahedron, Chem. Commun., 2004, (12): 1372
CrossRef ADS Google scholar
[26]
R. P. Goodman, I. A. T. Schaap, C. F. Tardin, C. M. Erben, Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication, Science, 2005, 310(5754): 1661
CrossRef ADS Google scholar
[27]
H. Pei, N. Lu, Y. Wen, S. Song, Y. Liu, H. Yan, and C. H. Fan, A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing, Adv. Mater., 2010, 22(42): 4754
CrossRef ADS Google scholar
[28]
H. Pei, Y. Wan, J. Li, H. Y. Hu, Y. Su, Q. Huang, and C. H. Fan, Regenerable electrochemical immunological sensing at DNA nanostructure-decorated gold surfaces, Chem. Commun., 2011, 47(22): 6254
CrossRef ADS Google scholar
[29]
Y. L.Wen, H. Pei, Y. Wan, Y. Su, Q. Huang, S. P. Song, and C. H. Fan, DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors, Anal. Chem., 2011, 83(19): 7418
CrossRef ADS Google scholar
[30]
A. S. Walsh, H. Yin, C. M. Erben, M. J. Wood, and A. J. Turberfield, DNA cage delivery to mammalian cells, ACS Nano, 2011, 5(7): 5427
CrossRef ADS Google scholar
[31]
J. Li, H. Pei, B. Zhu, L. Liang, M. Wei, Y. He, N. Chen, D. Li, Q. Huang, and C. H. Fan, Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides, ACS Nano, 2011, 5(11): 8783
CrossRef ADS Google scholar
[32]
S. Datta, Electronic transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
CrossRef ADS Google scholar
[33]
Q. F. Sun, J. Wang, and T. H. Lin, Photon sidebands of the ground state and the excited state of a quantum dot: A nonequilibrium Green-function approach, Phys. Rev. B, 1998, 58(19): 13007
CrossRef ADS Google scholar
[34]
Q. F. Sun and X. C. Xie, Bias-controllable intrinsic spin polarization in a quantum dot: Proposed scheme based on spin-orbit interaction, Phys. Rev. B, 2006, 73(23): 235301
CrossRef ADS Google scholar
[35]
H. Zhang, X. Q. Li, P. Han, X. Y. Yu, and Y. Yan, A partially incoherent rate theory of long-range charge transfer in deoxyribose nucleic acid, J. Chem. Phys., 2002, 117(9): 4578
CrossRef ADS Google scholar
[36]
K. Senthilkumar, F. C. Grozema, C. F. Guerra, F. M. Bickelhaupt, F. D. Lewis, Y. A. Berlin, M. A. Ratner, and L. D. A. Siebbeles, Absolute rates of hole transfer in DNA, J. Am. Chem. Soc., 2005, 127(42): 14894
CrossRef ADS Google scholar
[37]
L. G. D. Hawke, G. Kalosakas, and C. Simserides, Electronic parameters for charge transfer along DNA, Eur. Phys. J. E, 2010, 32(3): 291
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(229 KB)

Accesses

Citations

Detail

Sections
Recommended

/