Simulation study on cavity growth in ductile metal materials under dynamic loading

Ai-Guo Xu, Guang-Cai Zhang, Yang-Jun Ying, Xi-Jun Yu

PDF(952 KB)
PDF(952 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (4) : 394-404. DOI: 10.1007/s11467-013-0348-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Simulation study on cavity growth in ductile metal materials under dynamic loading

Author information +
History +

Abstract

Cavity growth in ductile metal materials under dynamic loading is investigated via the material point method. Two typical cavity effects in the region subjected to rarefaction wave are identified: (i) part of material particles flow away from the cavity in comparison to the initial loading velocity, (ii) local regions show weaker negative or even positive pressures. Neighboring cavities interact via coalescence of isobaric contours. The growth of cavity under tension shows staged behaviors. After the initial slow stage, the volume and the dimensions in both the tensile and transverse directions show linear growth rate with time until the global tensile wave arrives at the upper free surface. It is interesting that the growth rate in the transverse direction is faster than that in the tensile direction. The volume growth rate linearly increases with the initial tensile velocity. After the global tensile wave passed the cavity, both the maximum particle velocity in the tensile direction and the maximum particle velocity in the opposite direction increase logarithmically with the initial tensile speed. The shock wave reflected back from the cavity and compression wave from the free surface induce the initial behavior of interfacial instabilities such as the Richtmyer-Meshkov instability, which is mainly responsible for the irregularity in the morphology of deformed cavity. The local temperatures and distribution of hot spots are determined by the plastic work. Compared with the dynamical process, the heat conduction is much slower.

Keywords

material point method / cavity growth / dynamic loading / interfacial instability

Cite this article

Download citation ▾
Ai-Guo Xu, Guang-Cai Zhang, Yang-Jun Ying, Xi-Jun Yu. Simulation study on cavity growth in ductile metal materials under dynamic loading. Front. Phys., 2013, 8(4): 394‒404 https://doi.org/10.1007/s11467-013-0348-2

References

[1]
G. T. Gray, P. J. Maudlin, L. M. Hull, Q. K. Zuo, and S. R. Chen, Predicting material strength, damage, and fracture the synergy between experiment and modeling, J. Fail. Anal. Prev., 2005, 5(3): 7
CrossRef ADS Google scholar
[2]
M. M. Carroll, and A. C. Holt, Static and dynamic PoreCollapse relations for ductile porous materials, J. Appl. Phys., 1972, 27(3): 1626
CrossRef ADS Google scholar
[3]
J. N. Johnson, Dynamic fracture and spallation in ductile solids, J. Appl. Phys., 1981, 52(4): 2812
CrossRef ADS Google scholar
[4]
R. Becker, The effect of porosity distribution on ductile failure, J. Mech. Phys. Solids, 1987, 35(5): 577
CrossRef ADS Google scholar
[5]
M. Ortiz and A. Molinari, Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material, J. Appl. Mech., 1992, 59(1): 48
CrossRef ADS Google scholar
[6]
D. J. Benson, An analysis of void distribution effects on the dynamic growth and coalescence of voids in ductile metals, J. Mech. Phys. Solids, 1993, 41(8): 1285
CrossRef ADS Google scholar
[7]
X. Y. Wu, K. T. Ramesh, and T. W. Wright, The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading, J. Mech. Phys. Solids, 2003, 51(1): 1
CrossRef ADS Google scholar
[8]
T. Pardoen, I. Doghri, and F. Delannay, Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars, Acta Mater., 1998, 46(2): 541
CrossRef ADS Google scholar
[9]
T. Pardoen and J. W. Hutchinson, An extended model for void growth and coalescence, J. Mech. Phys. Solids, 2000, 48(12): 2467
CrossRef ADS Google scholar
[10]
V. C. Orsini and M. A. Zikry, Void growth and interaction in crystalline materials, Int. J. Plast., 2001, 17(10): 1393
CrossRef ADS Google scholar
[11]
V. Tvergaard and J. W. Hutchinson, Two mechanisms of ductile fracture: Void by void growth versus multiple void interaction, Int. J. Solids Struct., 2002, 39(13–14): 3581
CrossRef ADS Google scholar
[12]
T. I. Zohdi, M. Kachanov, and I. Sevostianov, On perfectly plastic flow in porous material, Int. J. Plast., 2002, 18(12): 1649
CrossRef ADS Google scholar
[13]
D. R. Curran, L. Seaman, and D. A. Shockey, Dynamic failure of solids, Phys. Rep., 1987, 147(5–6): 253
CrossRef ADS Google scholar
[14]
E. T. Seppala, J. Belak, and R. Rudd, Onset of void coalescence during dynamic fracture of ductile metals, Phys. Rev. Lett., 2004, 93(24): 245503
CrossRef ADS Pubmed Google scholar
[15]
A. K. Zurek, W. R. Thissell, J. N. Johnson, D. L. Tonks, and R. Hixson, Micromechanics of spall and damage in tantalum, J. Mater. Process. Technol., 1996, 60(1–4): 261
CrossRef ADS Google scholar
[16]
A. K. Zurek, J. D. Embury, A. Kelly, W. R. Thissell, R. L. Gustavsen, J. E. Vorthman, and R. S. Hixson, Microstructure of depleted uranium under uniaxial strain conditions, AIP Conf. Proc., 1998, 429: 423
CrossRef ADS Google scholar
[17]
D. L. Tonks, A. K. Zurek, and W. R. Thissell, Void coalescence model for ductile damage, AIP Conf. Proc., 2002, 620: 611
CrossRef ADS Google scholar
[18]
J. P. Bandstra, D. M. Goto, and D. A. Koss, Ductile failure as a result of a void-sheet instability: experiment and computational modeling, Mater. Sci. Eng. A, 1998, 249(1–2): 46
CrossRef ADS Google scholar
[19]
J. P. Bandstra, and D. A. Koss, Modeling the ductile fracture process of void coalescence by void-sheet formation, Mater. Sci. Eng. A, 2001, 319–321: 490
CrossRef ADS Google scholar
[20]
J. P. Bandstra, D. A. Koss, A. Geltmacher, P. Matic, and R. K. Everett, Modeling void coalescence during ductile fracture of a steel, Mater. Sci. Eng. A, 2004, 366(2): 269
CrossRef ADS Google scholar
[21]
M. F. Horstemeyer, M. M. Matalanis, A. M. Sieber, and M. L. Botos, Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence, Int. J. Plasticity, 2000, 16(7): 979
CrossRef ADS Google scholar
[22]
E. T. Sepplälä, J. Belak, and R. E. Rudd, Three-dimensional molecular dynamics simulations of void coalescence during dynamic fracture of ductile metals, Phys. Rev. B, 2005, 71(6): 064112
CrossRef ADS Google scholar
[23]
L. M. Dupuy and R. E. Rudd, Surface identification, meshing and analysis during large molecular dynamics simulations, Model. Simul. Mater. Sci. Eng., 2006, 14(2): 229
CrossRef ADS Google scholar
[24]
W. Pang, G. Zhang, A. G. Xu, and G. Lu, Size effect in void growth and coalescence of face-centered cubic copper crystals, Chin. J. Comp. Phys., 2011, 28: 540 (in Chinese)
[25]
W. Pang, P. Zhang, G. Zhang, A. G. Xu, and X. Zhao, The nucleation and growth of nanovoids under high tensile strain rate, Sci. China – Phys. Mech. Astron., 2012, 42: 464
[26]
D. Burgess, D. Sulsky, and J. U. Brackbill, Mass matrix formulation of the FLIP particle-in-cell method, J. Comput. Phys., 1992, 103(1): 1
CrossRef ADS Google scholar
[27]
S. Bardenhagen, J. Brackbill, and D. Sulsky, The materialpoint method for granular materials, Comput. Methods Appl. Mech. Eng., 2000, 187(3–4): 529
CrossRef ADS Google scholar
[28]
N. P. Daphalapurkar, H. Lu, D. Coker, and R. Komanduri, Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method, Int. J. Fract., 2007, 143(1): 79
CrossRef ADS Google scholar
[29]
S. Ma, X. Zhang, and X. M. Qiu, Comparison study of MPM and SPH in modeling hypervelocity impact problems, Int. J. Impact Eng., 2009, 36(2): 272
CrossRef ADS Google scholar
[30]
X. F. Pan, A. G. Xu, G. C. Zhang, P. Zhang, J. S. Zhu, S. Ma, and X. Zhang, Three-dimensional multi-mesh material point method for solving collision problems, Commun. Theor. Phys., 2008, 49(5): 1129
CrossRef ADS Google scholar
[31]
X. F. Pan, A. G. Xu, G. C. Zhang, and J. Zhu, Generalized interpolation material point approach to high melting explosive with cavities under shock, J. Phys. D, 2008, 41(1): 015401
CrossRef ADS Google scholar
[32]
A. G. Xu, X. F. Pan, G. C. Zhang, and J. Zhu, Materialpoint simulation of cavity collapse under shock, J. Phys.: Condens. Matter, 2007, 19(32): 326212
CrossRef ADS Google scholar
[33]
A. G. Xu, G. Zhang, X. F. Pan, and J. Zhu, Simulation Study of Shock Reaction on Porous Material, Commun. Theor. Phys., 2009, 51(4): 691
CrossRef ADS Google scholar
[34]
A. G. Xu, G. Zhang, P. Zhang, X. F. Pan, and J. Zhu, Dynamics and thermodynamics of porous HMX-like material under shock, Commun. Theor. Phys., 2009, 52(5): 901
CrossRef ADS Google scholar
[35]
A. G. Xu, G. C. Zhang, H. Li, Y. Ying, X. Yu, and J. Zhu, Temperature pattern dynamics in shocked porous materials, Sci. China – Phys. Mech. Astron., 2010, 53(8): 1466
[36]
A. G. Xu, G. C. Zhang, Y. Ying, P. Zhang, and J. Zhu, Shock wave response of porous materials: from plasticity to elasticity, Phys. Scr., 2010, 81(5): 055805
CrossRef ADS Google scholar
[37]
A. G. Xu, G. C. Zhang, H. Li, Y. Ying, and J. Zhu, Dynamical similarity in shock wave response of porous material: From the view of pressure, Comput. Math. Appl., 2011, 61(12): 3618
CrossRef ADS Google scholar
[38]
F. Auricchio and L. B. da Veiga, On a new integration scheme for von-Mises plasticity with linear hardening, Int. J. Numer. Meth. Eng., 2003, 56(10): 1375
CrossRef ADS Google scholar
[39]
B. Zhang, , Explosion Physics, Beijing: Ordance Industry Press of China, 1997

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(952 KB)

Accesses

Citations

Detail

Sections
Recommended

/