Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres

Liang-Ping Xia1,2, Zheng Yang1,3, Shao-Yun Yin1, Wen-Rui Guo2, Jing-Lei Du3, Chun-Lei Du1()

PDF(338 KB)
PDF(338 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (1) : 64-68. DOI: 10.1007/s11467-013-0345-5

Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres

  • Liang-Ping Xia1,2, Zheng Yang1,3, Shao-Yun Yin1, Wen-Rui Guo2, Jing-Lei Du3, Chun-Lei Du1()
Author information +
History +

Abstract

A fabrication process based on the self-assembling polystyrene spheres is proposed to obtain hole arrayed metal-insulator-metal (HA-MIM) structure for surface enhanced Raman scattering (SERS). The localized field enhancement aroused by the gap resonance in the HA-MIM structure is analyzed by finite-different time domain (FDTD) method. With reference to the theory result, the structure is experimentally fabricated and the Raman scattering spectrum of rhodamine 6G (R6G) is measured by a miniaturized Raman spectrometer. The results shows that the enhancement factor is 3.85 times higher than the control sample with single layered metal hole array. The fabrication process to obtain the HA-MIM SERS substrate is reproducible, fast, large area and low cost.

Graphical abstract

Keywords

metal-insulator-metal / surface enhanced Raman scattering / self-assemble / gap resonance

Cite this article

Download citation ▾
Liang-Ping Xia, Zheng Yang, Shao-Yun Yin, Wen-Rui Guo, Jing-Lei Du, Chun-Lei Du. Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres. Front. Phys., 2014, 9(1): 64‒68 https://doi.org/10.1007/s11467-013-0345-5

References

[1] L. Xia, S. Yin, H. Gao, Q. Deng, and C. Du, Sensitivity enhancement for surface plasmon resonance imaging biosensor by utilizing gold-silver bimetallic film configuration, Plasmonics , 2011, 6(2): 24510.1007/s11468-010-9195-y
[2] C. Li, L. Xia, H. Gao, R. Shi, C. Sun, H. Shi, and C. Du, Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays, Opt. Express , 2012, 20(S5): A58910.1364/OE.20.00A589
[3] A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, New biochip technology for label-free detection of pathogens and their toxins, J. Microbiol. Methods , 2003, 53(2): 221310.1016/S0167-7012(03)00026-5
[4] L. Yang, L. Ma, G. Chen, J. Liu, and Z. Tian, Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate, Chemistry , 2010, 16(42): 1268310.1002/chem.201001053
[5] X. T. Wang, W. S. Shi, G. W. She, L. X. Mu, and S. T. Lee, High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides, Appl. Phys. Lett. , 2010, 96(5): 05310410.1063/1.3300837
[6] M. Mulvihill, A. Tao, K. Benjauthrit, J. Arnold, and P. Yang, Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water, Angew. Chem. , 2008, 120(34): 655610.1002/ange.200800776
[7] A. Campion and P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev. , 1998, 27(4): 24110.1039/a827241z
[8] HongxingXu, E. J. Bjerneld, M. K?ll, and L. B?rjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. , 1999, 83(21): 435710.1103/PhysRevLett.83.4357
[9] K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS), Phys. Rev. E , 1998, 57(6): R628110.1103/PhysRevE.57.R6281
[10] L. Xia, Z. Yang, S. Yin, W. Guo, S. Li, W. Xie, D. Huang, Q. Deng, H. Shi, H. Cui, and C. Du, Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array, Opt. Express , 2013, 21(9): 1134910.1364/OE.21.011349
[11] M. T. Sun, Z. L. Zhang, H. R. Zheng, and H. X. Xu, In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy, Scientific Reports , 2012, 2: 64710.1038/srep00647
[12] M. Sun and H. Xu, A novel application of plasmonics: Plasmon-driven surface-catalyzed reactions, Small , 2012, 8(18): 277710.1002/smll.201200572
[13] Y. Fang, Y. Li, H. Xu, and M. Sun, Ascertaining p, p_- dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles, Langmuir , 2010, 26(11): 773710.1021/la904479q
[14] M. Sun, Y. Fang, Z. Zhang, and H. Xu, Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy, Phys. Rev. E , 2013, 87(2): 02040110.1103/PhysRevE.87.020401
[15] J. Li, Y. Huang, Y. Ding, Z. Yang, S. Li, X. Zhou, F. Fan, W. Zhang, Z. Zhou, D. Wu, B. Ren, Z. Wang, and Z. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature , 2010, 464(7287): 39210.1038/nature08907
[16] M. Jin, V. Pully, C. Otto, A. Berg, and E. T. Carlen, High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced Raman spectroscopy, J. Phys. Chem. C , 2010, 114(50): 2195310.1021/jp106245a
[17] K. Li, L. Clime, B. Cui, and T. Veres, Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays, Nanotechnology , 2008, 19(14): 14530510.1088/0957-4484/19/14/145305
[18] L. Xia, H. Gao, H. Shi, X. Dong, and C. Du, A wideband absorption enhancement for P3HT: PCBM addressing by silver nanosphere array, J. Comput. Theor. Nanosci. , 2011, 8(1): 2710.1166/jctn.2011.1653
[19] T. Xu, Y. K. Wu, X. G. Luo, and L. J. Guo, Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging, Nature Communications , 2010, 1:5910.1038/ncomms1058
[20] D. Woolf, M. Loncar, and F. Capasso, The forces from coupled surface plasmon polaritons in planar waveguides, Opt. Express , 2009, 17(22): 1999610.1364/OE.17.019996
[21] B. Y. Choi, D. Choi, and L. P. Lee, Metal-insulator-metal optical nanoantenna with equivalent-circuit analysis, Adv. Mater. , 2010, 22(15): 175410.1002/adma.200903443
[22] Y. Chu, M. G. Banaee, and K. B. Crozier, Double-resonance plasmon substrates for surface-enhanced Raman Scattering with enhancement at excitation and stokes frequencies, ACS Nano , 2010, 4(5): 510.1021/nn901826q
[23] Y. Chu, D. Wang, W. Q. Zhu, and K. B. Crozier, Double resonance surface enhanced Raman scattering substrates: An intuitive coupled oscillator model, Opt. Express , 2011, 19(16): 1491910.1364/OE.19.014919
[24] H. C. Kim and X. Cheng, SERS-active substrate based on gap surface plasmon polaritons, Opt. Express , 2009, 17(20): 1723410.1364/OE.17.017234
[25] B. Z. Wang, W. Zhao, A. Chen, and S.-J. Chua, Formation of nanoimprinting mould through use of nanosphere lithography, J. Cryst. Growth , 2006, 288(1): 20010.1016/j.jcrysgro.2005.12.051
[26] M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, Continuous layer gap plasmon resonators, Opt. Express , 2011, 19(20): 1931010.1364/OE.19.019310
[27] S. Li, S. Yin, Y. Jiang, C. Yin, Q. Deng, and C. Du, Specific protein detection in multiprotein coexisting environment by using LSPR biosensor, IEEE Transactions on Nanotechnology , 2010, 9(5): 55410.1109/TNANO.2010.2050698
AI Summary AI Mindmap
PDF(338 KB)

Accesses

Citations

Detail

Sections
Recommended

/