Hierarchical nanowires for high-performance electrochemical energy storage
Shuo Li(李硕), Yi-Fan Dong(董轶凡), Dan-Dan Wang(王丹丹), Wei Chen(陈伟), Lei Huang(黄磊), Chang-Wei Shi(石长玮), Li-Qiang Mai(麦立强)
Hierarchical nanowires for high-performance electrochemical energy storage
Nanowires are promising candidates for energy storage devices such as lithium-ion batteries, supercapacitors and lithium-air batteries. However, simple-structured nanowires have some limitations hence the strategies to make improvements need to be explored and investigated. Hierarchical nanowires with enhanced performance have been considered as an ideal candidate for energy storage due to the novel structures and/or synergistic properties. This review describes some of the recent progresses in the hierarchical nanowire merits, classification, synthesis and performance in energy storage applications. Herein we discuss the hierarchical nanowires based on their structural design from three major categories, including exterior design, interior design and aligned nanowire assembly. This review also briefly outlines the prospects of hierarchical nanowires in morphology control, property enhancement and application versatility.
hierarchical nanowires / exterior design / interior design / electrochemical performance / energy storage
[1] |
M. Armand and J. M. Tarascon, Building better batteries, Nature, 2008, 451(7179): 652
CrossRef
ADS
Google scholar
|
[2] |
D. R. Rolison and L. F. Nazar, Electrochemical energy storage to power the 21st century, MRS Bull., 2011, 36(07): 486
CrossRef
ADS
Google scholar
|
[3] |
S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 2012, 488(7411): 294
CrossRef
ADS
Google scholar
|
[4] |
B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources, 2010, 195(9): 2419
CrossRef
ADS
Google scholar
|
[5] |
M. M. Thackeray, C. Wolverton, and E. D. Isaacs, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci., 2012, 5(7): 7854
CrossRef
ADS
Google scholar
|
[6] |
J. Liu, Addressing the grand challenges in energy storage, Adv. Funct. Mater., 2013, 23(8): 924
CrossRef
ADS
Google scholar
|
[7] |
L. Su, Y. Jing, and Z. Zhou, Li ion battery materials with core-shell nanostructures, Nanoscale, 2011, 3(10): 3967
CrossRef
ADS
Google scholar
|
[8] |
T. Nagaura and K. Tozawa, Lithium ion rechargeable battery, Progress in Batteries and Solar Cells, 1990, 9: 209
|
[9] |
B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 2011, 334(6058): 928
CrossRef
ADS
Google scholar
|
[10] |
P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 2012, 11(1): 19
CrossRef
ADS
Google scholar
|
[11] |
C. Bai and M. Liu, From chemistry to nanoscience: Not just a matter of size, Angew. Chem. Int. Ed., 2013, 52(10): 2678
CrossRef
ADS
Google scholar
|
[12] |
P. G. Bruce, B. Scrosati, and J. M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed., 2008, 47(16): 2930
CrossRef
ADS
Google scholar
|
[13] |
J. Thomas, Lithium batteries: A spectacularly reactive cathode, Nat. Mater., 2003, 2(11): 705
CrossRef
ADS
Google scholar
|
[14] |
A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, 4(5): 366
CrossRef
ADS
Google scholar
|
[15] |
J. B. Goodenough, Cathode materials: A personal perspective, J. Power Sources, 2007, 174(2): 996
CrossRef
ADS
Google scholar
|
[16] |
L. Q. Mai, F. Yang, Y. L. Zhao, X. Xu, L. Xu, B. Hu, Y. Z. Luo, and H. Y. Liu, Molybdenum oxide nanowires: Synthesis & properties, Mater. Today, 2011, 14(7-8): 346
CrossRef
ADS
Google scholar
|
[17] |
M. Hu, X. Pang, and Z. Zhou, Recent progress in highvoltage lithium ion batteries, J. Power Sources, 2013, 237: 229
CrossRef
ADS
Google scholar
|
[18] |
C. M. Lieber, One-dimensional nanostructures: Chemistry, physics & applications, Solid State Commun., 1998, 107(11): 607
CrossRef
ADS
Google scholar
|
[19] |
Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, One-dimensional nanostructures: Synthesis, characterization, and applications, Adv. Mater., 2003, 15(5): 353
CrossRef
ADS
Google scholar
|
[20] |
A. I. Hochbaum and P. Yang, Semiconductor nanowires for energy conversion, Chem. Rev., 2010, 110(1): 527
CrossRef
ADS
Google scholar
|
[21] |
X. Duan and C. M. Lieber, General synthesis of compound semiconductor nanowires, Adv. Mater., 2000, 12(4): 298
CrossRef
ADS
Google scholar
|
[22] |
P. Yang, R. Yan, and M. Fardy, Semiconductor nanowire: What’s next? Nano Lett., 2010, 10(5): 1529
CrossRef
ADS
Google scholar
|
[23] |
T. J. Kempa, R. W. Day, S.K. Kim, H.G. Park, and C. M. Lieber, Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells, Energy Environ. Sci., 2013, 6(3): 719
CrossRef
ADS
Google scholar
|
[24] |
J.-M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414(6861): 359
CrossRef
ADS
Google scholar
|
[25] |
L. Q. Mai, B. Hu, W. Chen, Y. Y. Qi, C. Lao, R. Yang, Y. Dai, and Z. L.Wang, Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries, Adv. Mater., 2007, 19(21): 3712
CrossRef
ADS
Google scholar
|
[26] |
X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S. A. Dayeh, A. V. Davydov, S. X. Mao, S. T. Picraux, S. Zhang, J. Li, T. Zhu, and J. Y. Huang, In situ atomic-scale imaging of electrochemical lithiation in silicon, Nat. Nanotechnol., 2012, 7(11): 749
CrossRef
ADS
Google scholar
|
[27] |
M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, and Y. Cui, Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy, Adv. Mater., 2012, 24(45): 6034
CrossRef
ADS
Google scholar
|
[28] |
R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C, 2009, 113(26): 11390
CrossRef
ADS
Google scholar
|
[29] |
A. R. Armstrong, C. Lyness, P. M. Panchmatia, M. S. Islam, and P. G. Bruce, The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1-xO2, Nat. Mater., 2011, 10(3): 223
CrossRef
ADS
Google scholar
|
[30] |
M. Pharr, K. Zhao, X. Wang, Z. Suo, and J. J. Vlassak, Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries, Nano Lett., 2012, 12(9): 5039
CrossRef
ADS
Google scholar
|
[31] |
Y. Yang, C. Xie, R. Ruffo, H. Peng, K. Kim, and Y. Cui, Single nanorod devices for battery diagnostics: A case study on LiMn2O4, Nano Lett., 2009, 9(12): 4109
CrossRef
ADS
Google scholar
|
[32] |
L. Q. Mai, Y. J. Dong, L. Xu, and C. H. Han, Single nanowire electrochemical devices, Nano Lett., 2010, 10(10): 4273
CrossRef
ADS
Google scholar
|
[33] |
J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode, Science, 2010, 330(6010): 1515
CrossRef
ADS
Google scholar
|
[34] |
R. Liu, J. Duay, and S. B. Lee, Heterogeneous nanostructured electrode materials for electrochemical energy storage, Chem. Commun., 2010, 47(5): 1384
CrossRef
ADS
Google scholar
|
[35] |
X. Liu, Y. Lin, S. Zhou, S. Sheehan, and D. Wang, Complex nanostructures: Synthesis and energetic applications, Energies, 2010, 3(3): 285
CrossRef
ADS
Google scholar
|
[36] |
C. Cheng and H. J. Fan, Branched nanowires: Synthesis and energy applications, Nano Today, 2012, 7(4): 327
CrossRef
ADS
Google scholar
|
[37] |
H. Li, A. G. Kanaras, and L. Manna, Colloidal branched semiconductor nanocrystals: State of the art and perspectives, Acc. Chem. Res., 2013,
CrossRef
ADS
Google scholar
|
[38] |
S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K. D. Song, H. G. Park, and C. M. Lieber, Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design, Nano Lett., 2012, 12(9): 4971
CrossRef
ADS
Google scholar
|
[39] |
J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, Solutionprocessed core-shell nanowires for efficient photovoltaic cells, Nat. Nanotechnol., 2011, 6(9): 568
CrossRef
ADS
Google scholar
|
[40] |
B. Tian, T. J. Kempa, and C. M. Lieber, Single nanowire photovoltaics, Chem. Soc. Rev., 2009, 38(1): 16
CrossRef
ADS
Google scholar
|
[41] |
Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties, Nano Lett., 2012, 12(3): 1678
CrossRef
ADS
Google scholar
|
[42] |
Y. J. Hwang, A. Boukai, and P. D. Yang, High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity, Nano Lett., 2009, 9(1): 410
CrossRef
ADS
Google scholar
|
[43] |
C. Pan, S. Niu, Y. Ding, L. Dong, R. Yu, Y. Liu, G. Zhu, and Z. L. Wang, Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect, Nano Lett., 2012, 12(6): 3302
CrossRef
ADS
Google scholar
|
[44] |
Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, Coaxial group III-nitride nanowire photovoltaics, Nano Lett., 2009, 9(5): 2183
CrossRef
ADS
Google scholar
|
[45] |
F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire, ACS Nano, 2012, 6(10): 9229
CrossRef
ADS
Google scholar
|
[46] |
T. J. Kempa, J. F. Cahoon, S. K. Kim, R. W. Day, D. C. Bell, H. G. Park, and C. M. Lieber, Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics, Proc. Natl. Acad. Sci. USA, 2012, 109(5): 1407
CrossRef
ADS
Google scholar
|
[47] |
B. Z. Tian and C. M. Lieber, Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes, Pure Appl. Chem., 2011, 83(12): 2153
CrossRef
ADS
Google scholar
|
[48] |
Y. Hu, J. Xiang, G. Liang, H. Yan, and C. M. Lieber, Sub- 100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed, Nano Lett., 2008, 8(3): 925
CrossRef
ADS
Google scholar
|
[49] |
Q. Yang, Y. Liu, C. Pan, J. Chen, X.Wen, and Z. L. Wang, Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect, Nano Lett., 2013, 13(2): 607
CrossRef
ADS
Google scholar
|
[50] |
H. Peng, C. Xie, D. T. Schoen, K. McIlwrath, X. F. Zhang, and Y. Cui, Ordered vacancy compounds and nanotube formation in CuInSe2-CdS coreshell nanowires, Nano Lett., 2007, 7(12): 3734
CrossRef
ADS
Google scholar
|
[51] |
G. Liang, J. Xiang, N. Kharche, G. Klimeck, C. M. Lieber, and M. Lundstrom, Performance analysis of a Ge/Si core/shell nanowire field-effect transistor, Nano Lett., 2007, 7(3): 642
CrossRef
ADS
Google scholar
|
[52] |
L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature, 2002, 420(6911): 57
CrossRef
ADS
Google scholar
|
[53] |
Y. Hu, F. Kuemmeth, C. M. Lieber, and C. M. Marcus, Hole spin relaxation in Ge-Si core-shell nanowire qubits, Nat. Nanotechnol., 2012, 7(1): 47
CrossRef
ADS
Google scholar
|
[54] |
B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature, 2007, 449(7164): 885
CrossRef
ADS
Google scholar
|
[55] |
Y. Dong, G. Yu, M. C. McAlpine, W. Lu, and C. M. Lieber, Si/a-Si core/shell nanowires as nonvolatile crossbar switches, Nano Lett., 2008, 8(2): 386
CrossRef
ADS
Google scholar
|
[56] |
Y. Hu, H. O. Churchill, D. J. Reilly, J. Xiang, C. M. Lieber, and C. M. Marcus, A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor, Nat. Nanotechnol., 2007, 2(10): 622
CrossRef
ADS
Google scholar
|
[57] |
T. Mokari, S. E. Habas, M. Zhang, and P. Yang, Synthesis of lead chalcogenide alloy and core-shell nanowires, Angew Chem. Int. Ed., 2008, 47(30): 5605
CrossRef
ADS
Google scholar
|
[58] |
C. R. Ghosh and S. Paria, Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev., 2012, 112(4): 2373
CrossRef
ADS
Google scholar
|
[59] |
S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin, and Z. Guo, Multifunctional composite coreshell nanoparticles, Nanoscale, 2011, 3(11): 4474
CrossRef
ADS
Google scholar
|
[60] |
W. M. Zhang, X. L. Wu, J. S. Hu, Y. G. Guo, and L. J. Wan, Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries, Adv. Funct. Mater., 2008, 18(24): 3941
CrossRef
ADS
Google scholar
|
[61] |
A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries, Nano Lett., 2009, 9(3): 1002
CrossRef
ADS
Google scholar
|
[62] |
B. Luo, B. Wang, M. Liang, J. Ning, X. Li, and L. Zhi, Reduced graphene oxidemediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties, Adv. Mater., 2012, 24(11): 1405
CrossRef
ADS
Google scholar
|
[63] |
S. M. Yuan, J. X. Li, L. T. Yang, L. W. Su, L. Liu, and Z. Zhou, Preparation and lithium storage performances of mesoporous Fe3O4@C microcapsules, ACS Appl. Mater. Interfaces, 2011, 3(3): 705
CrossRef
ADS
Google scholar
|
[64] |
H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. Mc-Dowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solidelectrolyte interphase control, Nat. Nanotechnol., 2012, 7(5): 310
CrossRef
ADS
Google scholar
|
[65] |
D. W. Kim, I. S. Hwang, S. J. Kwon, H. Y. Kang, K. S. Park, Y. J. Choi, K. J. Choi, and J. G. Park, Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes, Nano Lett., 2007, 7(10): 3041
CrossRef
ADS
Google scholar
|
[66] |
L. Q. Mai, X. Xu, C. H. Han, Y. Z. Luo, L. Xu, Y. A. Wu, and Y. L. Zhao, Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property, Nano Lett., 2011, 11(11): 4992
CrossRef
ADS
Google scholar
|
[67] |
S. Li, C. H. Han, L. Q. Mai, J. H. Han, X. Xu, and Y. Q. Zhu, Rational synthesis of coaxial MoO3/PTh nanowires with improved electrochemical cyclability, Int. J. Electrochem. Sci., 2011, 6: 4504
|
[68] |
L. Q. Mai, F. Dong, X. Xu, Y. Z. Luo, Q. Y. An, Y. L. Zhao, J. Pan, and J. N. Yang, Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene) & MnO2 nanowires with enhanced electrochemical cyclability, Nano Lett., 2013, 13(2): 740
CrossRef
ADS
Google scholar
|
[69] |
R. Liu and S. B. Lee, MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage, J. Am. Chem. Soc., 2008, 130(10): 2942
CrossRef
ADS
Google scholar
|
[70] |
X. Jiang, B. Tian, J. Xiang, F. Qian, G. Zheng, H. Wang, L. Q. Mai, and C. M. Lieber, Rational growth of branched nanowire heterostructures with synthetically encoded properties and function, Proc. Natl. Acad. Sci. USA, 2011, 108(30): 12212
CrossRef
ADS
Google scholar
|
[71] |
B. Tian, P. Xie, T. J. Kempa, D. C. Bell, and C. M. Lieber, Single-crystalline kinked semiconductor nanowire superstructures, Nat. Nanotechnol., 2009, 4(12): 824
CrossRef
ADS
Google scholar
|
[72] |
S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell, Nano Lett., 2011, 11(2): 666
CrossRef
ADS
Google scholar
|
[73] |
J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, Three-dimensional battery architectures, Chem. Rev., 2004, 104(10): 4463
CrossRef
ADS
Google scholar
|
[74] |
W. Zhou, C. Cheng, J. Liu, Y. Y. Tay, J. Jiang, X. Jia, J. Zhang, H. Gong, H. H. Hng, T. Yu, and H. J. Fan, Epitaxial growth of branched –Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance, Adv. Funct. Mater., 2011, 21(13): 2439
CrossRef
ADS
Google scholar
|
[75] |
J. Liu, J. Jiang, M. Bosman, and H. J. Fan, Threedimensional tubular arrays of MnO2-NiO nanoflakes with high areal pseudocapacitance, J. Mater. Chem., 2012, 22(6): 2419
CrossRef
ADS
Google scholar
|
[76] |
J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, and H. J. Fan, Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: A new class of high-performance pseudocapacitive materials, Adv. Mater., 2011, 23(18): 2076
CrossRef
ADS
Google scholar
|
[77] |
L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang, and O. G. Schmidt, Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries, Adv. Mater., 2013, 25(8): 1180
CrossRef
ADS
Google scholar
|
[78] |
J. Zhao, Z. Lu, M. Shao, D. Yan, M. Wei, D. G. Evans, and X. Duan, Flexible hierarchical nanocomposites based on MnO2 nanowires/CoAl hydrotalcite/carbon fibers for highperformance supercapacitors, RSC Adv., 2012, 3(4): 1045
CrossRef
ADS
Google scholar
|
[79] |
S. Zhou, X. Yang, Y. Lin, J. Xie, and D. Wang, A nanonetenabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime, ACS Nano, 2012, 6(1): 919
CrossRef
ADS
Google scholar
|
[80] |
S. He, X. Hu, S. Chen, H. Hu, M. Hanif, and H. Hou, Needlelike polyaniline nanowires on graphite nanofibers: Hierarchical micro/nano-architecture for high performance supercapacitors, J. Mater. Chem., 2012, 22(11): 5114
CrossRef
ADS
Google scholar
|
[81] |
J. G. Kim, S. H. Nam, S. H. Lee, S. M. Choi, and W. B. Kim, SnO2 nanorod-planted graphite: An effective nanostructure configuration for reversible lithium ion storage, ACS Appl. Mater. Interfaces, 2011, 3(3): 828
CrossRef
ADS
Google scholar
|
[82] |
L. Q. Mai, F. Yang, Y. L. Zhao, X. Xu, L. Xu, and Y. Z. Luo, Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance, Nat. Commun., 2011, 2: 381
CrossRef
ADS
Google scholar
|
[83] |
F. Schüth, Non-siliceous mesostructured and mesoporous materials, Chem. Mater., 2001, 13(10): 3184
CrossRef
ADS
Google scholar
|
[84] |
M. E. Davis, Ordered porous materials for emerging applications, Nature, 2002, 417(6891): 813
CrossRef
ADS
Google scholar
|
[85] |
F. Schüth and W. Schmidt, Microporous and mesoporous materials, Adv. Eng. Mater., 2002, 4(5): 269
CrossRef
ADS
Google scholar
|
[86] |
C. Liang, Z. Li, and S. Dai, Mesoporous carbon materials: Synthesis and modification, Angew. Chem. Int. Ed., 2008, 47(20): 3696
CrossRef
ADS
Google scholar
|
[87] |
A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev., 1997, 97(6): 2373
CrossRef
ADS
Google scholar
|
[88] |
J. Lee, J. Kim, and T. Hyeon, Recent progress in the synthesis of porous carbon materials, Adv. Mater., 2006, 18(16): 2073
CrossRef
ADS
Google scholar
|
[89] |
F. D. Wu and Y. Wang, Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries, J. Mater. Chem., 2011, 21(18): 6636
CrossRef
ADS
Google scholar
|
[90] |
H. Jiang, J. Ma, and C. Li, Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors, Chem. Commun., 2012, 48(37): 4465
CrossRef
ADS
Google scholar
|
[91] |
D. Yu, C. Chen, S. Xie, Y. Liu, K. Park, X. Zhou, Q. Zhang, J. Li, and G. Cao, Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ionstorage properties by electrospinning, Energy Environ. Sci., 2011, 4(3): 858
CrossRef
ADS
Google scholar
|
[92] |
L. Q. Mai, L. Xu, C. H. Han, X. Xu, Y. Z. Luo, S. Y. Zhao, and Y. L. Zhao, Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries, Nano Lett., 2010, 10(11): 4750
CrossRef
ADS
Google scholar
|
[93] |
Y. L. Zhao, L. Xu, L. Q. Mai, C. H. Han, Q. Y. An, X. Xu, X. Liu, and Q. J. Zhang, Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Liair batteries, Proc. Natl. Acad. Sci. USA, 2012, 109(48): 19569
CrossRef
ADS
Google scholar
|
[94] |
G. M. Koenig, Jr.
CrossRef
ADS
Google scholar
|
[95] |
Y. K. Sun, S. T. Myung, B. C. Park, J. Prakash, I. Belharouak, and K. Amine, Highenergy cathode material for long-life and safe lithium batteries, Nat. Mater., 2009, 8(4): 320
CrossRef
ADS
Google scholar
|
[96] |
Y. K. Sun, Z. Chen, H. J. Noh, D. J. Lee, H. G. Jung, Y. Ren, S. Wang, C. S. Yoon, S. T. Myung, and K. Amine, Nanostructured high-energy cathode materials for advanced lithium batteries, Nat. Mater., 2012, 11(11): 942
CrossRef
ADS
Google scholar
|
[97] |
R. Krishnan, T. M. Lu, and N. Koratkar, Functionally strain-graded nanoscoops for high power Li-ion battery anodes, Nano Lett., 2011, 11(2): 377
CrossRef
ADS
Google scholar
|
[98] |
J. Jiang, Y. Li, J. Liu, and X. Huang, Building onedimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes, Nanoscale, 2011, 3(1): 45
CrossRef
ADS
Google scholar
|
[99] |
C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 2008, 3(1): 31
CrossRef
ADS
Google scholar
|
[100] |
P. Meduri, E. Clark, J. H. Kim, E. Dayalan, G. U. Sumanasekera, and M. K. Sunkara, MoO3-x nanowire arrays as stable and high-capacity anodes for lithium ion batteries, Nano Lett., 2012, 12(4): 1784
CrossRef
ADS
Google scholar
|
[101] |
S. Chen, M. Wang, J. Ye, J. Cai, Y. Ma, H. Zhou, and L. Qi, Kineticscontrolled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance, Nano Res., 2013, 6(4): 243
CrossRef
ADS
Google scholar
|
[102] |
K. Wang, Q. Meng, Y. Zhang, Z. Wei, and M. Miao, Highperformance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays, Adv. Mater., 2013, 25(10): 1494
CrossRef
ADS
Google scholar
|
[103] |
L. Shen, E. Uchaker, X. Zhang, and G. Cao, Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries, Adv. Mater., 2012, 24(48): 6502
CrossRef
ADS
Google scholar
|
[104] |
F. F. Cao, J. W. Deng, S. Xin, H. X. Ji, O. G. Schmidt, L. J. Wan, and Y. G. Guo, Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries, Adv. Mater., 2011, 23(38): 4415
CrossRef
ADS
Google scholar
|
[105] |
C. H. Han, Y. Q. Pi, Q. Y. An, L. Q. Mai, J. L. Xie, X. Xu, L. Xu, Y. L. Zhao, C. J. Niu, A. M. Khan, and X. He, Substrate-assisted self-organization of radial –AgVO3 nanowire clusters for high rate rechargeable lithium batteries, Nano Lett., 2012, 12(9): 4668
CrossRef
ADS
Google scholar
|
[106] |
L. Q. Mai, Y. H. Gu, C. H. Han, B. Hu, W. Chen, P. Zhang, L. Xu, W. L. Guo, and Y. Dai, Orientated Langmuir–Blodgett assembly of VO2 nanowires, Nano Lett., 2009, 9(2): 826
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |