DNA condensation and size effects of DNA condensation agent
Yan-Hui Liu, Chong-Ming Jiang, Xin-Miao Guo, Yan-Lin Tang, Lin Hu
DNA condensation and size effects of DNA condensation agent
Based on the model of the strong correlation of counterions condensed on DNA molecule, by tailoring interaction potential, interduplex spacing and correlation spacing between condensed counterions on DNA molecule and interduplex spacing fluctuation strength, toroidal configuration, rod-like configuration and two-hole configurations are possible. The size effects of counterion structure on the toroidal structure can be detected by this model. The autocorrelation function of the tangent vectors is found as an effective way to detect the structure of toroidal conformations and the generic pathway of the process of DNA condensation. The generic pathway of all of the configurations involves an initial nucleation loop, and the next part of the DNA chain is folded on the top of the initial nucleation loop with different manners, in agreement with the recent experimental results.
DNA condensation / Monte Carlo simulation / size effects of condensation agent
[1] |
N. V. Hud and I. D. Vilfan, Toroidal DNA condensates: Unraveling the fine structure and the role of nucleation in determining size, Annu. Rev. Biophys. Biomol. Struct., 2005, 34: 295
CrossRef
ADS
Pubmed
Google scholar
|
[2] |
V. A. Bloomfield, DNA condensation,Curr. Opin. Struct. Biol., 1996, 6(3): 334
CrossRef
ADS
Google scholar
|
[3] |
A. Leforestier, A. Siber, F. Livolant, and R. Podgornik, Protein-DNA interactions determine the shapes of DNA toroids condensed in virus capsids, Biophys. J., 2011, 100: 2209
CrossRef
ADS
Pubmed
Google scholar
|
[4] |
Z. Y. Ou and M. Muthukumar, Langevin dynamics of semi-flexible polyelectrolytes: Rod-toroid-globule-coil structures and counterion distribution, J. Chem. Phys., 2005, 123(7): 074905
CrossRef
ADS
Pubmed
Google scholar
|
[5] |
W. M. Gelbart, R. F. Bruinsma, P. A. Pincus, V. A. Parsegian, and W. J. Johnson, DNA-inspired electrostatics, Phys. Today, 2000, 53: 38
CrossRef
ADS
Google scholar
|
[6] |
B. Schnurr, F. C. MacKintosh, and D. R. M. Williams, Dynamical intermediates in the collapse of semiflexible polymers in poor solvents, Europhys. Lett., 2000, 51: 279
CrossRef
ADS
Google scholar
|
[7] |
W. B. Fu, X. L. Wang, X. H. Zhang, S. Y. Ran, J. Yan, and M. Li, Compaction dynamics of single DNA molecules under tension, J. Am. Chem. Soc., 2006, 128(47): 15040
CrossRef
ADS
Pubmed
Google scholar
|
[8] |
F. Oosawa, Interaction between parallel rodlike macroions, Biopolymers, 1968, 6(11): 1633
CrossRef
ADS
Google scholar
|
[9] |
G. S. Manning, Limiting laws and counterion condensation in polyelectrolyte solutions (i): Colligative properties, J. Chem. Phys., 1969, 51(3): 924
CrossRef
ADS
Google scholar
|
[10] |
B. Y. Ha and A. J. Liu, Counterion-mediated attraction between two like-charged rods, Phys. Rev. Lett., 1997, 79(7): 1289
CrossRef
ADS
Google scholar
|
[11] |
I. Rouzina and V. A. Bloomfield, Macroion attraction due to electrostatic correlation between screening counterions (1): Mobile surface-adsorbed ions and diffuse ion cloud, J. Phys. Chem., 1996, 100(23): 9977
CrossRef
ADS
Google scholar
|
[12] |
Y. Levin, J. J. Arenzon, and J. F. Stilck, The nature of attraction between like-charged rods, Phys. Rev. Lett., 1999, 83(13): 2680
CrossRef
ADS
Google scholar
|
[13] |
A. A. Kornyshev and S. Leikin, Electrostatic zipper motif for DNA aggregation, Phys. Rev. Lett., 1999, 82(20): 4138
CrossRef
ADS
Google scholar
|
[14] |
K. Besteman, S. Hage, N. H. Dekker, and S. G. Lemay, Role of tension and twist in single-molecule DNA condensation, Phys. Rev. Lett., 2007, 98(5): 058103
CrossRef
ADS
Pubmed
Google scholar
|
[15] |
K. Besteman, K. Van Eijk, and S. G. Lemay, Charge inversion accompanies DNA condensation by multivalent ions, Nat. Phys., 2007, 3(9): 641
CrossRef
ADS
Google scholar
|
[16] |
F. Ritort, S. Mihardja, S. B. Smith, and C. Bustamante, Condensation transition in DNA-polyaminoamide dendrimer fibers studied using optical tweezers, Phys. Rev. Lett., 2006, 96(11): 118301
CrossRef
ADS
Pubmed
Google scholar
|
[17] |
W. K. Kim and W. Sung, Charge density coordination and dynamics in a rodlike polyelectrolyte, Phys. Rev. E, 2008, 78(2): 021904
CrossRef
ADS
Pubmed
Google scholar
|
[18] |
L. Dai, Y. G. Mu, L. Nordenskiöld, and J. R. van der Maarel, Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules, Phys. Rev. Lett., 2008, 100(11): 118301
CrossRef
ADS
Pubmed
Google scholar
|
[19] |
F. Oosawa, Polyelectrolyte, New York: Marcel Dekker, INC, 1971
|
[20] |
J. Barrat and J. Hansen, Basic Concepts for Simple and Complex Liquids, Cambridge: Cambridge University Press, 2003
CrossRef
ADS
Google scholar
|
[21] |
Y. H. Liu and L. Hu, Monte Carlo simulation on topology of DNA minicircles, Chinese J. Comput. Phys., 2009, 26: 152 (in Chinese)
|
[22] |
J. Marko, Introduction to single-DNA micromechanics in multiple aspects of DNA and RNA from biophysics to bioinformatics Les Houches Session LXXXII, Elsevier, 2005
|
[23] |
L. S. Lerman, L. S. Wilkerson, J. H. Venable, Jr, and B. H. Robinson, DNA packing in single crystals inferred from freeze-fracture-etch replicas, J. Mol. Biol., 1976, 108(2): 271
CrossRef
ADS
Google scholar
|
[24] |
J. A. Schellman and N. Parthasarathy, X-ray diffraction studies on cation-collapsed DNA, J. Mol. Biol., 1984, 175: 313
CrossRef
ADS
Google scholar
|
[25] |
H. Deng and V. A. Bloomfield, Structural effects of cobaltamine compounds on DNA condensation, Biophys. J., 1999, 77(3): 1556
CrossRef
ADS
Google scholar
|
[26] |
G. E. Plum, P. G. Arscott, and V. A. Bloomfield, Condensation of DNA by trivalent cations (2): Effects of cation structure, Biopolymers, 1990, 30(5–6): 631
CrossRef
ADS
Pubmed
Google scholar
|
[27] |
J. Widom and R. L. Baldwin, Monomolecular condensation of lambda-DNA induced by cobalt hexamine, Biopolymers, 1983, 22(6): 1595
CrossRef
ADS
Pubmed
Google scholar
|
[28] |
J. A. Benbasat, Condensation of bacteriophage phi W14 DNA of varying charge densities by trivalent counterions, Biochemistry, 1984, 23(16): 3609
CrossRef
ADS
Pubmed
Google scholar
|
[29] |
A. M. Carnerup, M. L. Ainalem, V. Alfredsson, and T. Nylander, Watching DNA condensation induced by poly (amido amine) dendrimer with time-resolved cryo-TEM, Langmuir, 2009, 25(21): 12466
CrossRef
ADS
Pubmed
Google scholar
|
[30] |
G. S. Manning, The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force, Biophys. J., 2006, 91(10): 3607
CrossRef
ADS
Pubmed
Google scholar
|
[31] |
S. Geggier, A. Kotlyar, and A. Vologodskii, Temperature dependence of DNA persistence length, Nucleic Acids Res., 2011, 39(4): 1427
CrossRef
ADS
Pubmed
Google scholar
|
/
〈 | 〉 |