DNA condensation and size effects of DNA condensation agent

Yan-Hui Liu, Chong-Ming Jiang, Xin-Miao Guo, Yan-Lin Tang, Lin Hu

PDF(235 KB)
PDF(235 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (4) : 467-471. DOI: 10.1007/s11467-013-0342-8
RESEARCH ARTICLE
RESEARCH ARTICLE

DNA condensation and size effects of DNA condensation agent

Author information +
History +

Abstract

Based on the model of the strong correlation of counterions condensed on DNA molecule, by tailoring interaction potential, interduplex spacing and correlation spacing between condensed counterions on DNA molecule and interduplex spacing fluctuation strength, toroidal configuration, rod-like configuration and two-hole configurations are possible. The size effects of counterion structure on the toroidal structure can be detected by this model. The autocorrelation function of the tangent vectors is found as an effective way to detect the structure of toroidal conformations and the generic pathway of the process of DNA condensation. The generic pathway of all of the configurations involves an initial nucleation loop, and the next part of the DNA chain is folded on the top of the initial nucleation loop with different manners, in agreement with the recent experimental results.

Keywords

DNA condensation / Monte Carlo simulation / size effects of condensation agent

Cite this article

Download citation ▾
Yan-Hui Liu, Chong-Ming Jiang, Xin-Miao Guo, Yan-Lin Tang, Lin Hu. DNA condensation and size effects of DNA condensation agent. Front. Phys., 2013, 8(4): 467‒471 https://doi.org/10.1007/s11467-013-0342-8

References

[1]
N. V. Hud and I. D. Vilfan, Toroidal DNA condensates: Unraveling the fine structure and the role of nucleation in determining size, Annu. Rev. Biophys. Biomol. Struct., 2005, 34: 295
CrossRef ADS Pubmed Google scholar
[2]
V. A. Bloomfield, DNA condensation,Curr. Opin. Struct. Biol., 1996, 6(3): 334
CrossRef ADS Google scholar
[3]
A. Leforestier, A. Siber, F. Livolant, and R. Podgornik, Protein-DNA interactions determine the shapes of DNA toroids condensed in virus capsids, Biophys. J., 2011, 100: 2209
CrossRef ADS Pubmed Google scholar
[4]
Z. Y. Ou and M. Muthukumar, Langevin dynamics of semi-flexible polyelectrolytes: Rod-toroid-globule-coil structures and counterion distribution, J. Chem. Phys., 2005, 123(7): 074905
CrossRef ADS Pubmed Google scholar
[5]
W. M. Gelbart, R. F. Bruinsma, P. A. Pincus, V. A. Parsegian, and W. J. Johnson, DNA-inspired electrostatics, Phys. Today, 2000, 53: 38
CrossRef ADS Google scholar
[6]
B. Schnurr, F. C. MacKintosh, and D. R. M. Williams, Dynamical intermediates in the collapse of semiflexible polymers in poor solvents, Europhys. Lett., 2000, 51: 279
CrossRef ADS Google scholar
[7]
W. B. Fu, X. L. Wang, X. H. Zhang, S. Y. Ran, J. Yan, and M. Li, Compaction dynamics of single DNA molecules under tension, J. Am. Chem. Soc., 2006, 128(47): 15040
CrossRef ADS Pubmed Google scholar
[8]
F. Oosawa, Interaction between parallel rodlike macroions, Biopolymers, 1968, 6(11): 1633
CrossRef ADS Google scholar
[9]
G. S. Manning, Limiting laws and counterion condensation in polyelectrolyte solutions (i): Colligative properties, J. Chem. Phys., 1969, 51(3): 924
CrossRef ADS Google scholar
[10]
B. Y. Ha and A. J. Liu, Counterion-mediated attraction between two like-charged rods, Phys. Rev. Lett., 1997, 79(7): 1289
CrossRef ADS Google scholar
[11]
I. Rouzina and V. A. Bloomfield, Macroion attraction due to electrostatic correlation between screening counterions (1): Mobile surface-adsorbed ions and diffuse ion cloud, J. Phys. Chem., 1996, 100(23): 9977
CrossRef ADS Google scholar
[12]
Y. Levin, J. J. Arenzon, and J. F. Stilck, The nature of attraction between like-charged rods, Phys. Rev. Lett., 1999, 83(13): 2680
CrossRef ADS Google scholar
[13]
A. A. Kornyshev and S. Leikin, Electrostatic zipper motif for DNA aggregation, Phys. Rev. Lett., 1999, 82(20): 4138
CrossRef ADS Google scholar
[14]
K. Besteman, S. Hage, N. H. Dekker, and S. G. Lemay, Role of tension and twist in single-molecule DNA condensation, Phys. Rev. Lett., 2007, 98(5): 058103
CrossRef ADS Pubmed Google scholar
[15]
K. Besteman, K. Van Eijk, and S. G. Lemay, Charge inversion accompanies DNA condensation by multivalent ions, Nat. Phys., 2007, 3(9): 641
CrossRef ADS Google scholar
[16]
F. Ritort, S. Mihardja, S. B. Smith, and C. Bustamante, Condensation transition in DNA-polyaminoamide dendrimer fibers studied using optical tweezers, Phys. Rev. Lett., 2006, 96(11): 118301
CrossRef ADS Pubmed Google scholar
[17]
W. K. Kim and W. Sung, Charge density coordination and dynamics in a rodlike polyelectrolyte, Phys. Rev. E, 2008, 78(2): 021904
CrossRef ADS Pubmed Google scholar
[18]
L. Dai, Y. G. Mu, L. Nordenskiöld, and J. R. van der Maarel, Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules, Phys. Rev. Lett., 2008, 100(11): 118301
CrossRef ADS Pubmed Google scholar
[19]
F. Oosawa, Polyelectrolyte, New York: Marcel Dekker, INC, 1971
[20]
J. Barrat and J. Hansen, Basic Concepts for Simple and Complex Liquids, Cambridge: Cambridge University Press, 2003
CrossRef ADS Google scholar
[21]
Y. H. Liu and L. Hu, Monte Carlo simulation on topology of DNA minicircles, Chinese J. Comput. Phys., 2009, 26: 152 (in Chinese)
[22]
J. Marko, Introduction to single-DNA micromechanics in multiple aspects of DNA and RNA from biophysics to bioinformatics Les Houches Session LXXXII, Elsevier, 2005
[23]
L. S. Lerman, L. S. Wilkerson, J. H. Venable, Jr, and B. H. Robinson, DNA packing in single crystals inferred from freeze-fracture-etch replicas, J. Mol. Biol., 1976, 108(2): 271
CrossRef ADS Google scholar
[24]
J. A. Schellman and N. Parthasarathy, X-ray diffraction studies on cation-collapsed DNA, J. Mol. Biol., 1984, 175: 313
CrossRef ADS Google scholar
[25]
H. Deng and V. A. Bloomfield, Structural effects of cobaltamine compounds on DNA condensation, Biophys. J., 1999, 77(3): 1556
CrossRef ADS Google scholar
[26]
G. E. Plum, P. G. Arscott, and V. A. Bloomfield, Condensation of DNA by trivalent cations (2): Effects of cation structure, Biopolymers, 1990, 30(5–6): 631
CrossRef ADS Pubmed Google scholar
[27]
J. Widom and R. L. Baldwin, Monomolecular condensation of lambda-DNA induced by cobalt hexamine, Biopolymers, 1983, 22(6): 1595
CrossRef ADS Pubmed Google scholar
[28]
J. A. Benbasat, Condensation of bacteriophage phi W14 DNA of varying charge densities by trivalent counterions, Biochemistry, 1984, 23(16): 3609
CrossRef ADS Pubmed Google scholar
[29]
A. M. Carnerup, M. L. Ainalem, V. Alfredsson, and T. Nylander, Watching DNA condensation induced by poly (amido amine) dendrimer with time-resolved cryo-TEM, Langmuir, 2009, 25(21): 12466
CrossRef ADS Pubmed Google scholar
[30]
G. S. Manning, The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force, Biophys. J., 2006, 91(10): 3607
CrossRef ADS Pubmed Google scholar
[31]
S. Geggier, A. Kotlyar, and A. Vologodskii, Temperature dependence of DNA persistence length, Nucleic Acids Res., 2011, 39(4): 1427
CrossRef ADS Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(235 KB)

Accesses

Citations

Detail

Sections
Recommended

/