Evolution law of Wigner function in laser process
Rui He, Jun-Hua Chen, Hong-Yi Fan
Evolution law of Wigner function in laser process
Based on the density operator’s o perator-sum representation r ecently obtained by Fan and Hu for a laser process (Opt. Commun., 2008, 281: 5571; Opt. Commun., 2009, 282: 932; Phys. Lett. B, 2008, 22: 2435), we derive the evolution law of Wigner operator, the law is concisely expressed in the normally ordered form: :, where g and κ are the cavity gain and the loss, respectively, and T≡ (κ-g )(κ+g-2ge-2(κ-g) t)-1. When : :, which is the initial Wigner operator. Using this formalism the evolution law of Wigner functions in laser process can be directly obtained.
Kraus operator / Wigner operator / laser process
[1] |
D. F. Walls and G. J. M ilburn, Quantum Optics, Berlin: Springer , 1995
|
[2] |
M. Orszag, Quantum Optics , Berlin : Springer , 2000
|
[3] |
M. O. Scully and M. S. Zubairy, Quantum Optics , Cambridge: Cambridge University Press, 1997
CrossRef
ADS
Google scholar
|
[4] |
H . J. Carmichael , Statistical Methods in Quantum Optics 1: Master Equations and Fokker –Planck Equations , Berlin: Springer , 1999
|
[5] |
H . Y . Fan and L. Y. Hu , New approach f or analyzing time evolution of density operator in a dissipative channel by the entangled state representation, Opt. Commun., 2008, 281(22): 5571
CrossRef
ADS
Google scholar
|
[6] |
H . Y . Fan and L. Y . Hu , Infinite- dimensional Kraus operators for describing amplitude- damping channel and laser process, Opt . Commun., 2009, 282(5): 932
CrossRef
ADS
Google scholar
|
[7] |
H. Y. Fan and L. Y. Hu, Operator-sum representation of density operators as solutions to master equations obtained via entangled state approach, Mod. Phys. Lett. B, 2008, 22(25): 2435
CrossRef
ADS
Google scholar
|
[8] |
E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 1932, 40(5): 749
CrossRef
ADS
Google scholar
|
[9] |
H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momenent., Phys. Rev. A, 1994, 49(2): 704
CrossRef
ADS
Google scholar
|
[10] |
H. Y. Fan, Common eigenstates of two particles’ centerofmass coordinates and mass-weighted relative momentum, Phys. Rev. A, 1995, 51(4): 3343
CrossRef
ADS
Google scholar
|
[11] |
H. Y. Fan, New application of thermo field dynamics in simplifying the calculation of Wigner functions, Mod. Phys. Lett. A, 2003, 18(11): 733
CrossRef
ADS
Google scholar
|
[12] |
F. Chen and H. Y. Fan, A new approach to the time evolution of characteristic function of the density operator obtained by virtue of thermal entangled state representation, Sci. China-Phys. Mech. Astron., 2012, 55(11): 2076
|
[13] |
H. H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed States, Amsterdam: NorthHolland Publishing Company, 1982
|
[14] |
H. Y. Fan and J. Vanderlinde, Simple approach to the wave functions of one and two-mode squeezed states, Phys. Rev. A, 1989, 39(3): 1552
CrossRef
ADS
Google scholar
|
[15] |
H. Y. Fan, Squeezed states: Operators for two types of one- and two-mode squeezing transformations, Phys. Rev. A, 1990, 41(3): 1526
CrossRef
ADS
Google scholar
|
[16] |
H . Y . Fan, H . C. Yuan, and N. Q. Jiang, Deriving new operator identities by alternately using normally, anti normally, and Weyl ordered integration technique, Sci. China- Phys. Mech. Astron., 2010, 53(9): 1626
|
[17] |
H . Y . Fan and J. Zhou, Coherent state and normal ordering method for transiting Her mite polynomials to Laguerre polynomials, Sci. China-Phys . Mech. Astron ., 2012, 55(4): 605
|
[18] |
R. J. Glauber , Coherent and incoherent states of the radiation field , Phys. Rev. , 1963, 131(6): 2766
CrossRef
ADS
Google scholar
|
[19] |
J. R. Klauder and B. S. Skargerstam , Coherent States , Singapore: World Scientific Press , 1985
|
[20] |
L.Y. Hu and H. Y. Fan, Time evolution of Wigner function in laser proces sderived by entangled state representation, O pt. Commun., 2009, 282(22): 4379
CrossRef
ADS
Google scholar
|
[21] |
H. Y. Fan and L. Y. Hu, Correspondence between quantumoptical trans for mand classical-optical trans form explored by developing Dirac’ s symbolic method , Front . Phys. , 2012, 7(3): 261
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |