Propagation dynamics on the Fermi–Pasta–Ulam lattices

Zong-Qiang Yuan, Zhi-Gang Zheng

PDF(382 KB)
PDF(382 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (3) : 349-355. DOI: 10.1007/s11467-013-0333-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Propagation dynamics on the Fermi–Pasta–Ulam lattices

Author information +
History +

Abstract

The spatiotemporal propagation of a momentum excitation on the finite Fermi–Pasta–Ulam lattices is investigated. The competition between the solitary wave and phonons gives rise to interesting propagation behaviors. For a moderate nonlinearity, the initially excited pulse may propagate coherently along the lattice for a long time in a solitary wave manner accompanied by phonon tails. The lifetime of the long-transient propagation state exhibits a sensitivity to the nonlinear parameter. The solitary wave decays exponentially during the final loss of stability, and the decay rate varying with the nonlinear parameter exhibits two different scaling laws. This decay is found to be related to the largest Lyapunov exponent of the corresponding Hamiltonian system, which manifests a transition from weak to strong chaos. The mean-free-path of the solitary waves is estimated in the strong chaos regime, which may be helpful to understand the origin of anomalous conductivity in the Fermi–Pasta–Ulam lattice.

Keywords

Fermi–Pasta–Ulam model / solitary wave / low-dimensional heat conduction

Cite this article

Download citation ▾
Zong-Qiang Yuan, Zhi-Gang Zheng. Propagation dynamics on the Fermi–Pasta–Ulam lattices. Front. Phys., 2013, 8(3): 349‒355 https://doi.org/10.1007/s11467-013-0333-9

References

[1]
S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett., 1997, 78(10): 1896
CrossRef ADS Google scholar
[2]
K. Aoki and D. Kusnezov, Phys. Rev. Lett., 2001, 86(18): 4029
CrossRef ADS Google scholar
[3]
S. Lepri, R. Livi, and A. Politi, Phys. Rep., 2003, 377(1): 1
CrossRef ADS Google scholar
[4]
A. Dhar, Adv. Phys., 2008, 57(5): 457
[5]
N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Rev. Mod. Phys., 2012, 84(3): 1045
CrossRef ADS Google scholar
[6]
M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett., 2002, 88(9): 094302
CrossRef ADS Google scholar
[7]
B. Li, L. Wang, and G. Casati, Phys. Rev. Lett., 2004, 93(18): 184301
CrossRef ADS Google scholar
[8]
C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, Phys. Rev. Lett., 2007, 99(4): 045901
CrossRef ADS Google scholar
[9]
L. Wang and B. Li, Phys. Rev. Lett., 2007, 99(17): 177208
CrossRef ADS Google scholar
[10]
L. Wang and B. Li, Phys. Rev. Lett., 2008, 101(26): 267203
CrossRef ADS Google scholar
[11]
L. Wang and B. Li, Phys. World, 2008, 21: 27
[12]
C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science, 2006, 314(5802): 1121
CrossRef ADS Google scholar
[13]
W. Kobayashi, Y. Teraoka, and I. Terasaki, Appl. Phys. Lett., 2009, 95(17): 171905
CrossRef ADS Google scholar
[14]
J. Ren and B. Li, Phys. Rev. E, 2010, 81(2): 021111
CrossRef ADS Google scholar
[15]
G. S. Zavt, M. Wagner, and A. Lütze, Phys. Rev. E, 1993, 47(6): 4108
CrossRef ADS Google scholar
[16]
A. Sarmiento, R. Reigada, A. H. Romero, and K. Lindenberg, Phys. Rev. E, 1999, 60(5): 5317
CrossRef ADS Google scholar
[17]
A. Rosas and K. Lindenberg, Phys. Rev. E, 2004, 69(1): 016615
CrossRef ADS Google scholar
[18]
E. Fermi, J. Pasta, and S. Ulam, Los Alamos Document No. LA-1940, 1955
[19]
N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett., 1965, 15(6): 240
CrossRef ADS Google scholar
[20]
A. J. Sievers and S. Takeno, Phys. Rev. Lett., 1988, 61(8): 970
CrossRef ADS Google scholar
[21]
S. Flach, M. V. Ivanchenko, and O. I. Kanakov, Phys. Rev. Lett., 2005, 95(6): 064102
CrossRef ADS Google scholar
[22]
P. Villain and M. Lewenstein, Phys. Rev. A, 2000, 62(4): 043601
CrossRef ADS Google scholar
[23]
G. Miloshevich, R. Khomeriki, and S. Ruffo, Phys. Rev. Lett., 2009, 102(2): 020602
CrossRef ADS Google scholar
[24]
B. Li, J. H. Lan, and L. Wang, Phys. Rev. Lett., 2005, 95(10): 104302
CrossRef ADS Google scholar
[25]
T. Mai, A. Dhar, and O. Narayan, Phys. Rev. Lett., 2007, 98(18): 184301
CrossRef ADS Google scholar
[26]
A. Dhar and K. Saito, Phys. Rev. E, 2008, 78(6): 061136
CrossRef ADS Google scholar
[27]
N. Li, B. Li, and S. Flach, Phys. Rev. Lett., 2010, 105(5): 054102
CrossRef ADS Google scholar
[28]
C. Antonopoulos and T. Bountis, Phys. Rev. E, 2006, 73(5): 056206
CrossRef ADS Google scholar
[29]
J. A. D. Wattis, J. Phys. A, 1993, 26(5): 1193
CrossRef ADS Google scholar
[30]
G. Friesecke and J. Wattis, Commun. Math. Phys., 1994, 161(2): 391
CrossRef ADS Google scholar
[31]
F. Zhang, D. J. Isbister, and D. J. Evans, Phys. Rev. E, 2000, 61(4): 3541
CrossRef ADS Google scholar
[32]
F. Zhang, D. J. Isbister, and D. J. Evans, Phys. Rev. E, 2001, 64(2): 021102
CrossRef ADS Google scholar
[33]
S. R. Forrest and T. A. Jr. Witten, J. Phys. A, 1979, 12(5): L109
CrossRef ADS Google scholar
[34]
G. Gallavotti (Ed.), The Fermi–Pasta–Ulam Problem, Springer-Verlag, 2008
[35]
L. Casetti, R. Livi, and M. Pettini, Phys. Rev. Lett., 1995, 74(3): 375
CrossRef ADS Google scholar
[36]
L. Casetti, C. Clementi, and M. Pettini, Phys. Rev. E, 1996, 54(6): 5969
CrossRef ADS Google scholar
[37]
N. Li and B. Li, Europhys. Lett., 2007, 78(3): 34001
CrossRef ADS Google scholar
[38]
H. Zhao, Phys. Rev. Lett., 2006, 96(14): 140602
CrossRef ADS Google scholar
[39]
N. Li, P. Tong, and B. Li, Europhys. Lett., 2006, 75(1): 49
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(382 KB)

Accesses

Citations

Detail

Sections
Recommended

/