Structural and elastic properties of Ce2O3 under pressure from LDA+
Yuan-Yuan Qi, Zhen-Wei Niu, Cai Cheng, Yan Cheng
Structural and elastic properties of Ce2O3 under pressure from LDA+
We investigate the structural and elastic properties of hexagonal Ce2O3 under pressure using LDA+U scheme in the frame of density functional theory (DFT). The obtained lattice constants and bulk modulus agree well with the available experimental and other theoretical data. The pressure dependences of normalized lattice parameters a/a0 and c/c0, ratio c/a, and normalized primitive volume V/V0 of Ce2O3 are obtained. Moreover, the pressure dependences of elastic properties and three anisotropies of elastic waves of Ce2O3 are investigated for the first time. We find that the negative value of C44 is indicative of the structural instability of the hexagonal structure Ce2O3 at zero temperature and 30 GPa. Finally, the density of states (DOS) of Ce2O3 under pressure is investigated.
elastic properties / high pressure / density functional theory / Ce2O3
[1] |
A. Trovarelli, Catalysis by Ceria and Related Materials, London: Imperial College Press, 2002
|
[2] |
M. Kobayashi, and M. Ishii, Excellent radiation-resistivity of cerium-doped gadolinium silicate scintillators, Nucl. Instrum. Methods B, 1991, 61(4): 491
CrossRef
ADS
Google scholar
|
[3] |
H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater., 1985, 131(2-3): 221
CrossRef
ADS
Google scholar
|
[4] |
J. Graciani, A. M. M’arquez, J. J. Plata, Y. Ortega, N. C. Hern’andez, A. Meyer, C. M. Zicovich-Wilson, and J. F. Sanz, Comparative study on the performance of hybrid DFT functionals in highly correlated oxides: The case of CeO2 and Ce2O3, J. Chem. Theory Comput., 2011, 7(1): 56
CrossRef
ADS
Google scholar
|
[5] |
T. Yamamoto, H. Momida, T. Hamada, T. Uda, and T. Ohno, First-principles study of dielectric properties of cerium oxide, Thin Solid Films, 2005, 486(1–2): 136
CrossRef
ADS
Google scholar
|
[6] |
O. L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids, 1963, 24(7): 909
CrossRef
ADS
Google scholar
|
[7] |
A. I. Shelykh, A. V. Prokofiev, and B. T. Melekh, Fiz. Tverd. Tela, 1996, 38: 91
|
[8] |
A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, Periodicity in the band gap variation of Ln2X3 (X= O, S, Se) in the lanthanide series, J. Alloy. Comp., 1996, 242(1–2): 41
CrossRef
ADS
Google scholar
|
[9] |
V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B, 1991, 44(3): 943
CrossRef
ADS
Google scholar
|
[10] |
D. A. Andersson, S. I. Simak, B. Johansson, I. A. Abrikosov, and N. V. Skorodumova, Modeling of CeO2, Ce2O3, and CeO2txin the LDA+U formalism, Phys. Rev. B, 2007, 75(3): 0351 09
CrossRef
ADS
Google scholar
|
[11] |
C. Loschen, J. Carrasco, K. M. Neyman, and F. Illas, Firstprinciples LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter, Phys. Rev. B, 2007, 75(3): 0351 15
CrossRef
ADS
Google scholar
|
[12] |
J. L. F. Da Silva, Stability of the Ce2O3 phases: A DFT+U investigation, Phys. Rev. B, 2007, 76(19): 193108
CrossRef
ADS
Google scholar
|
[13] |
L. V. Pourovskii, B. Amadon, S. Biermann, and A. Georges, Self-consistency over the charge density in dynamical meanfield theory: A linear muffin-tin implementation and some physical implications, Phys. Rev. B, 2007, 76(23): 235101
|
[14] |
B. Amadon, A self-consistent DFT+ DMFT scheme in the projector augmented wave method: applications to cerium, Ce2O3 and Pu2O3 with the Hubbard I solver and comparison to DFT+ U, J. Phys.: Condens. Matter, 2012, 24(7): 0756 04
|
[15] |
H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Localized and itinerant states in lanthanide oxides united by GW@LDA+U, Phys. Rev. Lett., 2009, 102(12): 126403
|
[16] |
P. J. Hay, R. L. Martin, J. Uddin, and G. E. Scuseria, Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional, J. Chem. Phys., 2006, 125(3): 0347 12
|
[17] |
A. D. Becke, A new mixing of Hartree–Fock and local density-functional theories, J. Chem. Phys., 1993, 98(2): 1372
|
[18] |
J. L. F. Da Silva, M. V. Ganduglia-Pirovano, and J. Sauer, Stability of the Ce2O3 phases: A DFT+U investigation, Phys. Rev. B, 2007, 76(19): 193108
|
[19] |
M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys., 1992, 64(4): 1045
|
[20] |
V. Milman, B. Winkler, J. A. White, C. J. Packard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quantum Chem., 2000, 77(5): 895
|
[21] |
S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys., 1980, 58(8): 1200
|
[22] |
H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B, 1976, 13(12): 5188
|
[23] |
D. C.Wallace, Thermodynamics of Crystals, New York: Wiley, 1972
|
[24] |
W. Voigt, Lehrbuch der Kristallphysik, Leipzig: Taubner, 1928
|
[25] |
A. Reuss, Berechnung der Flieβgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. Angew. Math. Mech., 1929, 9(1): 49
|
[26] |
K. B. Panda, and K. S. Ravi Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory, Comput. Mater. Sci., 2006, 35(2): 134
CrossRef
ADS
Google scholar
|
[27] |
Y. J. Hao, X. R. Chen, H. L. Cui, and Y. L. Bai, Firstprinciples calculations of elastic constants of c-BN, Physica B, 2006, 382(1–2): 118
CrossRef
ADS
Google scholar
|
[28] |
Z. L. Liu, X. R. Chen, and Y. L. Wang, First-principles calculations of elastic properties of LiBC, Physica B, 2006, 381(1–2): 139
CrossRef
ADS
Google scholar
|
[29] |
X. F. Li, G. F. Ji, F. Zhao, X. R. Chen, and D. Alfè, Firstprinciples calculations of elastic and electronic properties of NbB2 under pressure, J. Phys.: Condens. Matter, 2009, 21(2): 0255 05
CrossRef
ADS
Google scholar
|
[30] |
X. L. Yuan, D. Q. Wei, Y. Cheng, G. F. Ji, Q. M. Zhang, and Z. Z. Gong, Pressure effects on elastic and thermodynamic properties of Zr3Al intermetallic compound, Comput. Mater. Sci., 2012, 58: 125
CrossRef
ADS
Google scholar
|
[31] |
P. Wang, C. G. Piao, R. Y. Meng, Y. Cheng, and G. F. Ji, Elastic and electronic properties of YNi2B2C under pressure from first principles, Physica B, 2012, 407: 227
CrossRef
ADS
Google scholar
|
[32] |
P. Wang, Y. Cheng, X. H. Zhu, X. R. Chen, and G. F. Ji, First principles investigations on elastic and electronic properties of BaHfN2 under pressure, J. Alloy. Comp., 2012, 526:74
CrossRef
ADS
Google scholar
|
[33] |
H. Barnighausen and G. Schiller, The crystal structure of A-Ce2O3, J. Less Common Met., 1985, 110(1–2): 385
CrossRef
ADS
Google scholar
|
[34] |
F. Birch, Finite elastic strain of cubic crystals, Phys. Rev., 1947, 71(11): 809
CrossRef
ADS
Google scholar
|
[35] |
G. V. Sin’ko and N. A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J. Phys.: Condens. Matter, 2002, 14(29): 6989
CrossRef
ADS
Google scholar
|
[36] |
S. F. Pugh, Philos. Mag., 1954, 45: 833
|
[37] |
M. A. Auld, Acoustic Fields and Waves in Solids, Vol. I, New York: Wiley, 1973
|
[38] |
G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, Firstprinciples elastic constants for the hcp transition metals Fe, Co, and Re at high pressure, Phys. Rev. B, 1999, 60(2): 791
CrossRef
ADS
Google scholar
|
[39] |
M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford: Clarendon, 1954
|
/
〈 | 〉 |