Recent advances in the research of inorganic nanotubes and fullerene-like nanoparticles
Reshef Tenne
Recent advances in the research of inorganic nanotubes and fullerene-like nanoparticles
This minireview outlines the main scientific directions in the research of inorganic nanotubes (INT) and fullerene-like (IF) nanoparticles from layered compounds, in recent years. In particular, this review describes to some detail the progress in the synthesis of new nanotubes, including those from misfit compounds; core-shell and the successful efforts to scale-up the synthesis of WS2 multiwall nanotubes. The high-temperature catalytic growth of nanotubes, via solar ablation is discussed as well. Furthermore, the doping of the IF-MoS2 nanoparticles and its influence on the physiochemical properties of the nanoparticles, including their interesting tribological properties are briefly discussed. Finally, the numerous applications of these nanoparticles as superior solid lubricants and for reinforcing variety of polymers are discussed in brief.
inorganic nanotubes / fullerene-like (IF) / nanomaterials / solid state chemistry
[1] |
R. Tenne, L. Margulis, M. Genut, and G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide, Nature, 1992, 360(6403): 444
CrossRef
ADS
Google scholar
|
[2] |
L. Margulis, G. Salitra, R. Tenne, and M. Talianker, Nested fullerene-like structures, Nature, 1993, 365(6442): 113
CrossRef
ADS
Google scholar
|
[3] |
Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes, Science, 1995, 267(5195): 222
CrossRef
ADS
Google scholar
|
[4] |
M. Homyonfer, B. Alperson, Yu. Rosenberg, L. Sapir, S. R. Cohen, G. Hodes, and R. Tenne, Intercalation of inorganic fullerene-like structures yields photosensitive films and new tips for scanning probe microscopy, J. Am. Chem. Soc., 1997, 119(11): 2693
CrossRef
ADS
Google scholar
|
[5] |
R. Rosentsveig, A. Margolin, Y. Feldman, R. Popovitz-Biro, and R. Tenne, WS2 nanotube bundles and foils, Chem. Mater., 2002, 14(2): 471
CrossRef
ADS
Google scholar
|
[6] |
Y. Feldman, A. Zak, R. Popovitz-Biro, and R. Tenne, New reactor for production of tungsten disulfide hollow onionlike (inorganic fullerene-like) nanoparticles, Solid State Sci., 2000, 2(6): 663
CrossRef
ADS
Google scholar
|
[7] |
Y. Q. Zhu, W. K. Hsu, N. Grobert, B. H. Chang, M. Terrones, H. Terrones, H. W. Kroto, D. R. M. Walton, and B. Q. Wei, Production of WS2 nanotubes, Chem. Mater., 2000, 12(5): 1190
CrossRef
ADS
Google scholar
|
[8] |
H. A. Therese, J. Li, U. Kolb, and W. Tremel, Facile large scale synthesis of WS2 nanotubes from WO3 nanorods prepared by a hydrothermal route, Solid State Sci., 2005, 7(1): 67
CrossRef
ADS
Google scholar
|
[9] |
A. Rothschild, J. Sloan, and R. Tenne, Growth ofWS2 nanotubes phases, J. Am. Chem. Soc., 2000, 122(21): 5169
CrossRef
ADS
Google scholar
|
[10] |
A. Zak, L. Sallacan-Ecker, A. Margolin, M. Genut, and R. Tenne, Insight into the growth mechanism of WS2 nanotubes in the scaled-up fluidized-bed reactor, Nano, 2009, 4(02): 91
CrossRef
ADS
Google scholar
|
[11] |
A. Zak, L. Sallacan Ecker, R. Efrati, L. Drangai, N. Fleischer, and R. Tenne, Large-scale synthesis of WS2 multiwall nanotubes and their dispersion, an update, Sensors & Transducers J., 2011, 12: 1
|
[12] |
E. Zohar, S. Baruch, M. Shneider, H. Dodiuk, S. Kenig, H. D. Wagner, A. Zak, A. Moshkovith, L. Rapoport, and R. Tenne, The mechanical and tribological properties of epoxy nanocomposites with WS2 nanotubes, Sensors & Transducers J., 2011, 12: 53
|
[13] |
M. Naffakh, M. Remskar, C. Marco, and M. A. Gómez-Fatou, Dynamic crystallization kinetics and nucleation parameters of a new generation of nanocomposites based on isotactic polypropylene and MoS2 inorganic nanotubes, J. Phys. Chem. B, 2011, 115(12): 2850
CrossRef
ADS
Google scholar
|
[14] |
K. Tiong, P. Liao, C. Ho, and Y. Huang, Growth and characterization of rhenium-doped MoS2 single crystals, J. Cryst. Growth, 1999, 205(4): 543
CrossRef
ADS
Google scholar
|
[15] |
P. Yen, Y. Huang, and K. Tiong, The growth and characterization of rhenium-doped WS2 single crystals, J. Phys.: Condens. Matter, 2004, 16(12): 2171
CrossRef
ADS
Google scholar
|
[16] |
L. Yadgarov, R. Rosentsveig, G. Leitus, A. Albu-Yaron, A. Moshkovith, V. Perfilyev, R. Vasic, A. I. Frenkel, A. N. Enyashin, G. Seifert, L. Rapoport, and R. Tenne, Controlled doping of MS2 (M=W, Mo) nanotubes and fullerene-like nanoparticles, Angew. Chem. Int. Ed., 2012, 51(5): 1148
CrossRef
ADS
Google scholar
|
[17] |
L. Yadgarov, D. G. Stroppa, R. Rosentsveig, R. Ron, A. N. Enyashin, L. Houben, and R. Tenne, Investigation of rhenium-doped MoS2 nanoparticles with fullerene-like structure, Z. Anorg. Allg. Chem., 2012, 638(15): 2610
CrossRef
ADS
Google scholar
|
[18] |
L. Rapoport, A. Moshkovich, V. Perfiliev, A. Laikhtman, I. Lapsker, L. Yadgarov, R. Rosentsveig, and R. Tenne, High lubricity of Re-doped fullerene-like MoS2 nanoparticles, Tribol. Lett., 2012, 45(2): 257
CrossRef
ADS
Google scholar
|
[19] |
L. Yadgarov, V. Petrone, R. Rosentsveig, Y. Feldman, R. Tenne, and A. Senatore, Tribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditions, Wear, 2013, 297(1-2): 1103
CrossRef
ADS
Google scholar
|
[20] |
R. Rosentsveig, A. Margolin, A. Gorodnev, R. Popovitz- Biro, Y. Feldman, L. Rapoport, G. R. Samorodnitzky-Naveh, and R. Tenne, Synthesis of fullerene-like MoS2 nanoparticles and their tribological behavior, J. Mater. Chem., 2009, 19(25): 4368
CrossRef
ADS
Google scholar
|
[21] |
Q. C. Sun, L. Yadgarov, R. Rosentsveig, G. Seifert, R. Tenne, and J. L. Musfeldt, Observation of a Burstein-Moss shift in rhenium-doped MoS2 nanoparticles, ACS Nano, 2013, 7(4): 3506
CrossRef
ADS
Google scholar
|
[22] |
A. M. Morales and C. M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science, 1998, 279(5348): 208
CrossRef
ADS
Google scholar
|
[23] |
A. Yella, E. Mugnaioli, M. Panthofer, H. A. Therese, U. Kolb, and W. Tremel, Bismuth-catalyzed growth of SnS2 nanotubes and their stability, Angew. Chem. Int. Ed., 2009, 48(35): 6426
CrossRef
ADS
Google scholar
|
[24] |
O. Brontvein, D. G. Stroppa, R. Popovitz-Biro, A. Albu-Yaron, M. Levy, D. Feuerman, L. Houben, R. Tenne, and J. M. Gordon, New high-temperature Pb-catalyzed synthesis of inorganic nanotubes, J. Am. Chem. Soc., 2012, 134(39): 16379
CrossRef
ADS
Google scholar
|
[25] |
B. Alperson, M. Homyonfer, and R. Tenne, Photoelectrochemical studies with inorganic cage structures of metal dichalcogenides, J. Electroanal. Chem., 1999, 473(1-2): 186
CrossRef
ADS
Google scholar
|
[26] |
S. Y. Hong, R. Popovitz-Biro, Y. Prior, and R. Tenne, Synthesis of SnS2/SnS fullerene-like nanoparticles: A superlattice with polyhedral shape, J. Am. Chem. Soc., 2003, 125(34): 10470
CrossRef
ADS
Google scholar
|
[27] |
G. Radovsky, R. Popovitz-Biro, M. Staiger, K. Gartsman, C. Thomsen, T. Lorenz, G. Seifert, and R. Tenne, Synthesis of copious amounts of SnS2 and SnS2/SnS nanotubes with ordered superstructures, Angew. Chem. Int. Ed., 2011, 50(51): 12316
CrossRef
ADS
Google scholar
|
[28] |
G. Radovsky, R. Popovitz-Biro, and R. Tenne, Study of tubular structures of the misfit layered compound SnS2 /SnS, Chem. Mater., 2012, 24(15): 3004
CrossRef
ADS
Google scholar
|
[29] |
A. Meerschaut, Misfit layer compounds, Curr. Opin. Solid State & Mater. Sci., 1996, 1(2): 250
CrossRef
ADS
Google scholar
|
[30] |
J. Rouxel and A. Meerecheut, Misfit layer compounds (MX)n(TX2)m [M= Sn, Pb, Bi, Rare earth; T= Transition metal; X=S, Se; 1.08<n<1.25; m=1, 2], Mol. Cryst. Liq. Cryst. Sci. Tec. A, 1994, 244(1): 343
CrossRef
ADS
Google scholar
|
[31] |
G. A. Wiegers and A. Meerscheut, Misfit layer compounds (MS)nTS2 (M=Sn, Pb, Bi, Rare earth metals; T=Nb, Ta, Ti, V, Cr; 1.08<n<1.23): Structures and physical properties, Mater. Sci. Forum, 1992, 100-101: l01
|
[32] |
D. Bernaerts, S. Amelinckx, G. Van Tendeloo, and J. Van Landuyt, Microstructure and formation mechanism of cylindrical and conical scrolls of the misfit layer compounds PbNbnS2n+1, J. Cryst. Growth, 1997, 172(3-4): 433
CrossRef
ADS
Google scholar
|
[33] |
E. Philp, J. Sloan, A. I. Kirkland, R. R. Meyer, S. Friedrichs, J. L.Hutchison, and M. L. H. Green, An encapsulated helical one-dimensional cobalt iodide nanostructure, Nat. Mater., 2003, 2(12): 788
CrossRef
ADS
Google scholar
|
[34] |
R. Kreizman, S. Y. Hong, J. Sloan, R. Popovitz-Biro, A. Albu-Yaron, G. Tobias, B. Ballesteros, B. G. Davis, M. L. H. Green, and R. Tenne, Core-shell PbI2@WS2 inorganic nanotubes from capillary wetting, Angew. Chem. Int. Ed., 2009, 48(7): 1230
CrossRef
ADS
Google scholar
|
[35] |
R. Kreizman, A. N. Enyashin, F. L. Deepak, A. Albu-Yaron, R. Popovitz-Biro, G. Seifert, and R. Tenne, Synthesis of core-shell inorganic nanotubes, Adv. Funct. Mater., 2010, 20(15): 2459
CrossRef
ADS
Google scholar
|
[36] |
L. Rapoport, Yu. Bilik, Y. Feldman, M. Homyonfer, S. R. Cohen, and R. Tenne, Hollow nanoparticles of WS2 as potential solid-state lubricants, Nature, 1997, 387: 791
CrossRef
ADS
Google scholar
|
[37] |
VA237 and VA267 bearings in SKF catalog: http://www.skf. com/group/products/bearings-units-housings/engineeredproducts/skf-drylube-bearings/designation-system/index. html
|
[38] |
A. R. Adini, M. Redlich, and R. Tenne, Medical applications of inorganic fullerene-like nanoparticles, J. Mater. Chem., 2011, 21(39): 15121
CrossRef
ADS
Google scholar
|
[39] |
A. M. Díez-Pascual, M. Naffakh, C. Marco, and G. Ellis, Rheological and tribological properties of carbon nanotube/ thermoplastic nanocomposites incorporating inorganic fullerene-like WS2 nanoparticles, J. Phys. Chem. B, 2012, 116(27): 7959
CrossRef
ADS
Google scholar
|
[40] |
A. M. Díez-Pascual, M. Naffakh, C. Marco, and G. Ellis, Mechanical and electrical properties of carbon nanotube/ poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles, Composites: Part A, 2012, 43: 603
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |