Progress of nanoscience in China
Yu-Liang Zhao, Yan-Lin Song, Wei-Guo Song, Wei Liang, Xing-Yu Jiang, Zhi-Yong Tang, Hong-Xing Xu, Zhi-Xiang Wei, Yun-Qi Liu, Ming-Hua Liu, Lei Jiang, Xin-He Bao, Li-Jun Wan, Chun-Li Bai
Progress of nanoscience in China
Fast evolving nanosciences and nanotechnology in China has made it one of the front countries of nanotechnology development. In this review, we summarize some most recent progresses in nanoscience research and nanotechnology development in China. The topics we selected in this article include nano-fabrication, nanocatalysis, bioinspired nanotechnology, green printing nanotechnology, nanoplasmonics, nanomedicine, nanomaterials and their applications, energy and environmental nanotechnology, nano EHS (nanosafety), etc. Most of them have great potentials in applications or application-related key issues in future.
nanoscience / nanotechnology / nanomaterials / nanomedicine / plasmonics / fabrication / catalysis / nano EHS (nanosafety)
[1] |
C. L. Bai, Global voices of science: Ascent of nanoscience in China, Science, 2005, 309(5731): 61
CrossRef
ADS
Google scholar
|
[2] |
T.Chen, Q.Chen, X.Zhang, D.Wang, and L. J.Wan, Chiral Kagome network from thiacalix[4]arene tetrasulfonate at the interface of aqueous solution/Au(111) surface: An in situ electrochemical scanning tunneling microscopy study, J. Am. Chem. Soc., 2010, 132(16): 5598
CrossRef
ADS
Google scholar
|
[3] |
S. S.Li, B. H.Northrop, Q. H. Yuan, L. J. Wan, and P. J. Stang, Surface confined metallosupramolecular architectures: Formation and scanning tunneling microscopy characterization, Acc. Chem. Res., 2009, 42(2): 249
CrossRef
ADS
Google scholar
|
[4] |
Q. Chen, T. Chen, G. B. Pan, H. J. Yan, W. G. Song, L. J. Wan, Z. T. Li, Z. H. Wang, B. Shang, L. F. Yuan, and J. L. Yang, Structural selection of graphene supramolecular assembly oriented by molecular conformation and alkyl chain, Proc. Natl. Acad. Sci. USA, 2008, 105(44): 16849
CrossRef
ADS
Google scholar
|
[5] |
J. Liu, T. Chen, X. Deng, D. Wang, J. Pei, and L. J. Wan, Chiral hierarchical molecular nanostructures on twodimensional surface by controllable trinary self-assembly, J. Am. Chem. Soc., 2011, 133(51): 21010
CrossRef
ADS
Google scholar
|
[6] |
L. J.Wan, Fabricating and controlling molecular selforganization at solid surfaces: Studies by scanning tunneling microscopy, Acc. Chem. Res., 2006, 39(5): 334
CrossRef
ADS
Google scholar
|
[7] |
J. S.Hu, Y. G.Guo, H. P.Liang, L. J.Wan, and L. Jiang, Three-dimensional self-organization of supramolecular selfassembled porphyrin hollow hexagonal nanoprisms, J. Am. Chem. Soc., 2005, 127(48): 17090
CrossRef
ADS
Google scholar
|
[8] |
J. S. Hu, L. S. Zhong, W. G. Song, and L. J. Wan, Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal, Adv. Mater., 2008, 20(15): 2977
CrossRef
ADS
Google scholar
|
[9] |
H. P.Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan, and C. L. Bai, Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts, Angew. Chem. Int. Ed. Engl., 2004, 43(12): 1540
CrossRef
ADS
Google scholar
|
[10] |
M. Cao, J. S. Hu, H. P. Liang, and L. J. Wan, Selfassembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries, Angew. Chem. Int. Ed. Engl., 2005, 44(28): 4391
CrossRef
ADS
Google scholar
|
[11] |
Y. G. Guo, J. S. Hu, and L. J. Wan, Nanostru<?Pub Caret?>ctured materials for electrochemical energy conversion and storage devices, Adv. Mater., 2008, 20(15): 2878
CrossRef
ADS
Google scholar
|
[12] |
X. Sen, Y. G. Guo, and L. J. Wan, Nanocarbon networks for advanced rechargeable lithium batteries, Acc. Chem. Res., 2012, 45(10): 1759
CrossRef
ADS
Google scholar
|
[13] |
S. Xin, L. Gu, N. H. Zhao, Y. X. Yin, L. J. Zhou, Y. G. Guo, and L. J. Wan, Smaller sulfur molecules promise better lithium-sulfur batteries, J. Am. Chem. Soc., 2012, 134(45): 18510
CrossRef
ADS
Google scholar
|
[14] |
Y. Q.Wang, L. Gu, Y. G. Guo, H. Li, X. Q. He, S. Tsukimoto, Y. lkuhara, and L. J. Wan, Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery, J. Am. Chem. Soc., 2012, 134(18): 7874
CrossRef
ADS
Google scholar
|
[15] |
D. J. Xue, S. Xin, Y. Yan, K. C. Jiang, Y. X. Yin, Y. G. Guo, and L. J. Wan, Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks, J. Am. Chem. Soc., 2012, 134(5): 2512
CrossRef
ADS
Google scholar
|
[16] |
X. L. Pan and X. H. Bao, Reactions over catalysts confined in carbon nanotubes, Chem. Commun., 2008, 47(47): 6271
CrossRef
ADS
Google scholar
|
[17] |
X. L. Pan and X. H. Bao, The effects of confinement inside carbon nanotubes on catalysis, Acc. Chem. Res., 2011, 44(8): 553
CrossRef
ADS
Google scholar
|
[18] |
D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, and X. Bao, Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction, Angew. Chem. Int. Ed., 2013, 52(1): 371
CrossRef
ADS
Google scholar
|
[19] |
W. Chen, Z. L. Fan, X. L. Pan, and X. H. Bao, Effect of confinement in carbon nanotubes on the activity of FischerTropsch iron catalyst, J. Am. Chem. Soc., 2008, 130(29): 9414
CrossRef
ADS
Google scholar
|
[20] |
W. Chen, X. L. Pan, and X. H. Bao, Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes, J. Am. Chem. Soc., 2007, 129(23): 7421
CrossRef
ADS
Google scholar
|
[21] |
W. Chen, X. L. Pan, M. G. Willinger, D. S. Su, and X. H. Bao, Facile autoreduction of iron oxide/carbon nanotube encapsulates, J. Am. Chem. Soc., 2006, 128(10): 3136
CrossRef
ADS
Google scholar
|
[22] |
X. L. Pan, Z. L. Fan, W. Chen, Y. J. Ding, H. Y. Luo, and X. H. Bao, Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles, Nat. Mater., 2007, 6(7): 507
CrossRef
ADS
Google scholar
|
[23] |
Q. Fu, W. X. Li, Yunxi Yao, H. Y. Liu, H. Y. Su, D. Ma, X. K. Gu, L. M. Chen, Z. Wang, H. Zhang, B. Wang, and X. H. Bao, Interface-confined ferrous centers for catalytic oxidation, Science, 2010, 328(5982): 1141
CrossRef
ADS
Google scholar
|
[24] |
R. T. Mu, Q. Fu, L. Jin, L. Yu, G. Z. Fang, D. L. Tan, and X. H. Bao, Visualizing chemical reactions confined under graphene, Angew. Chem. Int. Ed. Engl., 2012, 51(20): 4856
CrossRef
ADS
Google scholar
|
[25] |
Q. Fu, F. Yang, and X. H. Bao, Interface-confined oxide nanostructures for catalytic oxidation reactions, Acc. Chem. Res., 2013 (in press)
CrossRef
ADS
Google scholar
|
[26] |
L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, Super-hydrophobic surfaces: from natural to artificial, Adv. Mater., 2002, 14(24): 1857
CrossRef
ADS
Google scholar
|
[27] |
T. Sun, L. Feng, X. F. Gao, and L. Jiang, Bioinspired surfaces with special wettability, Acc. Chem. Res., 2005, 38(8): 644
CrossRef
ADS
Google scholar
|
[28] |
F. Xia and L. Jiang, Bio-inspired, smart, multiscale interfacial materials, Adv. Mater., 2008, 20(15): 2842
CrossRef
ADS
Google scholar
|
[29] |
M. J. Liu, S. T. Wang, Z. X. Wei, Y. L. Song, and L. Jiang, Bioinspired design of a superoleophobic and low adhesive water/solid interface, Adv. Mater., 2009, 21(6): 665
CrossRef
ADS
Google scholar
|
[30] |
Y. M. Zheng, H. Bai, Z. B. Huang, X. L. Tian, F. Q. Nie, Y. Zhao, J. Zhai, and L. Jiang, Directional water collection on wetted spider silk, Nature, 2010, 463(7281): 640
CrossRef
ADS
Google scholar
|
[31] |
H. Bai, J. Ju, R. Z. Sun, Y. Chen, Y. M. Zheng, and L. Jiang, Controlled fabrication and water collection ability of bioinspired artificial spider silks, Adv. Mater., 2011, 23(32): 3708
CrossRef
ADS
Google scholar
|
[32] |
X. Hou, W. Guo, and L. Jiang, Biomimetic smart nanopores and nanochannels, Chem. Soc. Rev., 2011, 40(5): 2385
CrossRef
ADS
Google scholar
|
[33] |
W. Guo, L. X. Cao, J. C. Xia, F. Q. Nie, W. Ma, J. M. Xue, Y. L. Song, D. B. Zhu, Y. G. Wang, and L. Jiang, Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater., 2010, 20(8): 1339
CrossRef
ADS
Google scholar
|
[34] |
S. Wang, H. Wang, J. Jiao, K. J. Chen, G. E. Owens, K. I. Kamei, J. Sun, D. J. Sherman, C. P. Behrenbruch, H. Wu, and H. R. Tseng, Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells, Angew. Chem. Int. Ed. Engl., 2009, 48(47): 8970
CrossRef
ADS
Google scholar
|
[35] |
S. Wang, K. Liu, J. Liu,
CrossRef
ADS
Google scholar
|
[36] |
L. Chen, X. L. Liu, B. Su, J. Li, L. Jiang, D. Han, and S. T. Wang, Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces, Adv. Mater., 2011, 23(38): 4376
CrossRef
ADS
Google scholar
|
[37] |
H. B. Yao, Z. H. Tan, H. Y. Fang, and S. H. Yu, Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks, Angew. Chem. Int. Ed. Engl., 2010, 49(52): 10127
CrossRef
ADS
Google scholar
|
[38] |
H. B. Yao, H. Y. Fang, Z. H. Tan, L. H. Wu, and S. H. Yu, Biologically inspired, strong, transparent, and functional layered organic-inorganic hybrid films, Angew. Chem. Int. Ed. Engl., 2010, 49(12): 2140
CrossRef
ADS
Google scholar
|
[39] |
J. F. Wang, L. Lin, Q. F. Cheng, and L. Jiang, A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel, Angew. Chem. Int. Ed. Engl., 2012, 51(19): 4676
CrossRef
ADS
Google scholar
|
[40] |
Y. Demao, Practical Guide of Photosensitive Material and Print Plate, Beijing: Graphic Communications Press, 2007: 53
|
[41] |
H. H. Zhou and Y. L. Song, Green plate making technology based on nano-materials, Adv. Mater. Res., 2011, 174: 447
CrossRef
ADS
Google scholar
|
[42] |
C. Neinhuis and W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot., 1997, 79(6): 667
CrossRef
ADS
Google scholar
|
[43] |
X. F. Gao and L. Jiang, Biophysics: Water-repellent legs of water striders, Nature, 2004, 432(7013): 36
CrossRef
ADS
Google scholar
|
[44] |
X. Yao, Y. L. Song, and L. Jiang, Applications of bioinspired special wettable surfaces, Adv. Mater., 2011, 23(6): 719
CrossRef
ADS
Google scholar
|
[45] |
R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 1936, 28(8): 988
CrossRef
ADS
Google scholar
|
[46] |
B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 1944, 40: 546
CrossRef
ADS
Google scholar
|
[47] |
J. X. Wang, Y. Zhang, S. Wang, Y. L. Song, and L. Jiang, Bioinspired colloidal photonic crystals with controllable wettability, Acc. Chem. Res., 2011, 44(6): 405
CrossRef
ADS
Google scholar
|
[48] |
Y. Huang, M. Liu, J. X. Wang, J. M. Zhou, L. B. Wang, Y. L. Song, and L. Jiang, Controllable underwater oil-adhesioninterface films assembled from nonspherical particles, Adv. Funct. Mater., 2011, 21(23): 4436
CrossRef
ADS
Google scholar
|
[49] |
W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, 2003, 424(6950): 824
CrossRef
ADS
Google scholar
|
[50] |
Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, Plasmonic coupling of bow tie antennas with Ag nanowire, Nano Lett., 2011, 11(4): 1676
CrossRef
ADS
Google scholar
|
[51] |
X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits, Nano Lett., 2009, 9(12): 4515
CrossRef
ADS
Google scholar
|
[52] |
Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Branched silver nanowires as controllable plasmon routers, Nano Lett., 2010, 10(5): 1950
CrossRef
ADS
Google scholar
|
[53] |
S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, Chiral surface plasmon polaritons on metallic nanowires, Phys. Rev. Lett., 2011, 107(9): 096801
CrossRef
ADS
Google scholar
|
[54] |
H. Wei, Z. P. Li, X. R. Tian, Z. X. Wang, F. Z. Cong, N. Liu, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Quantum dot-based local field imaging reveals plasmonbased interferometric logic in silver nanowire networks, Nano Lett., 2011, 11(2): 471
CrossRef
ADS
Google scholar
|
[55] |
H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu, Cascaded logic gates in nanophotonic plasmon networks, Nat. Commun., 2011, 2: 387
CrossRef
ADS
Google scholar
|
[56] |
Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array, Phys. Rev. Lett., 2008, 101(8): 087401
CrossRef
ADS
Google scholar
|
[57] |
X. B. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, All-angle broadband negative refraction of metal waveguide arrays in the visible range: Theoretical analysis and numerical demonstration, Phys. Rev. Lett., 2006, 97(7): 073901
CrossRef
ADS
Google scholar
|
[58] |
H. S. Chen, B. I. Wu, B. Zhang, and J. A. Kong, Electromagnetic wave interactions with a metamaterial cloak, Phys. Rev. Lett., 2007, 99(6): 063903
CrossRef
ADS
Google scholar
|
[59] |
X. R. Huang, R. W. Peng, and R. H. Fan, Making metals transparent for white light by spoof surface plasmons, Phys. Rev. Lett., 2010, 105(24): 243901
CrossRef
ADS
Google scholar
|
[60] |
R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, Transparent metals for ultrabroadband electromagnetic waves, Adv. Mater., 2012, 24(15): 1980
CrossRef
ADS
Google scholar
|
[61] |
S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater., 2012, 11(5): 426
CrossRef
ADS
Google scholar
|
[62] |
Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, Wavefront shaping of infrared light through a subwavelength hole, Light: Science & Applications, 2012, 1(8): e26
CrossRef
ADS
Google scholar
|
[63] |
L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Plasmonic Airy beam generated by in-plane diffraction, Phys. Rev. Lett., 2011, 107(12): 126804
CrossRef
ADS
Google scholar
|
[64] |
H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering, Phys. Rev. Lett., 1999, 83(21): 4357
CrossRef
ADS
Google scholar
|
[65] |
Z. Q. Tian, B. Ren, and D. Y. Wu, Surface-enhanced raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem. B, 2002, 106(37): 9463
CrossRef
ADS
Google scholar
|
[66] |
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature, 2010, 464(7287): 392
CrossRef
ADS
Google scholar
|
[67] |
H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems, Nano Lett., 2008, 8(8): 2497
CrossRef
ADS
Google scholar
|
[68] |
H. Wei, U. Håkanson, Z. L. Yang, F. Höök, and H. X. Xu, Individual nanometer hole-particle pairs for surface-enhanced Raman scattering, Small, 2008, 4(9): 1296
CrossRef
ADS
Google scholar
|
[69] |
H. Y. Liang, Z. P. Li, W. Z. Wang, Y. S. Wu, and H. X. Xu, Highly surface-roughened flower-like silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering, Adv. Mater., 2009, 21(45): 4614
CrossRef
ADS
Google scholar
|
[70] |
Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons, Nano Lett., 2009, 9(5): 2049
CrossRef
ADS
Google scholar
|
[71] |
M. T. Sun, Z. Zhang, H. Zheng, and H. X. Xu, In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy, Scientific Reports, 2012, 2: 647
CrossRef
ADS
Google scholar
|
[72] |
Z. Liu, S. Y. Ding, Z. B. Chen, X. Wang, J. H. Tian, J. R. Anema, X. S. Zhou, D. Y. Wu, B. W. Mao, X. Xu, B. Ren, and Z. Q. Tian, Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy, Nat. Commun., 2011, 2: 305
CrossRef
ADS
Google scholar
|
[73] |
C. Y. Chen, G. M. Xing, J. X. Wang, Y. L. Zhao, B. Li, J. Tang, G. Jia, T. C. Wang, J. Sun, L. Xing, H. Yuan, Y. X. Gao, H. Meng, Z. Chen, F. Zhao, Z. F. Chai, and X. H. Fang, Multihydroxylated [Gd@C82(OH)22]n nanoparticles: Antineoplastic activity of high efficiency and low toxicity, Nano Lett., 2005, 5(10): 2050
CrossRef
ADS
Google scholar
|
[74] |
X. J. Liang, H. Meng, Y. Wang, H. Y. He, J. Meng, J. Lu, P. C. Wang, Y. Zhao, X. Gao, B. Sun, C. Y. Chen, G. Xing, D. Shen, M. M. Gottesman, Y. Wu, J. J. Yin, and L. Jia, Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis, Proc. Natl. Acad. Sci. USA, 2010, 107(16): 7449
CrossRef
ADS
Google scholar
|
[75] |
S. G. Kang, G. Q. Zhou, P. Yang, Y. Liu, B. Y. Sun, T. Huynh, H. Meng, L. N. Zhao, G. M. Xing, C. Y. Chen, Y. L. Zhao, and R. H. Zhou, Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine, Proc. Natl. Acad. Sci. USA, 2012, 109(38): 15431
CrossRef
ADS
Google scholar
|
[76] |
X. W. Ma, Y. L. Zhao, and X. J. Liang, Theranostic nanoparticles engineered for clinic and pharmaceutics, Acc. Chem. Res., 2011, 44(10): 1114
CrossRef
ADS
Google scholar
|
[77] |
J. Tang, G. M. Xing, Y. L. Zhao, L. Jing, X. F. Gao, Y. Cheng, H. Yuan, F. Zhao, Z. Chen, H. Meng, H. Zhang, H. J. Qian, R. Su, and K. Ibrahim, Periodical variation of electronic properties in polyhydroxylated metallofullerene materials, Adv. Mater., 2006, 18(11): 1458
CrossRef
ADS
Google scholar
|
[78] |
L. Yan, Y. B. Zheng, F. Zhao, S. J. Li, X. F. Gao, B. Q. Xu, P. S. Weiss, and Y. L. Zhao, Chemistry and physics of a single atomic layer: Strategies and challenges for functionalization of graphene and graphene-based materials, Chem. Soc. Rev., 2012, 41(1): 97
CrossRef
ADS
Google scholar
|
[79] |
H. Meng, G. M. Xing, B. Y. Sun, F. Zhao, H. Lei, W. Li, Y. Song, and Z. Chen, H. Yuan, X. X. Wang, J. Long, C. Y. Chen, X. J. Liang, N. Zhang, Z. F. Chai, and Y. L. Zhao, Potent Angiogenesis Inhibition by the Particulate Form of Fullerene Derivatives, ACS Nano, 2010, 4(5): 2773
CrossRef
ADS
Google scholar
|
[80] |
D. Yang, Y. L. Zhao, H. Guo, Y. N. Li, P. Tewary, G. M. Xing, W. Hou, J. J. Oppenheim, and N. Zhang, [Gd@C(82)(OH)(22)](n) nanoparticles induce dendritic cell maturation and activate Th1 immune responses, ACS Nano, 2010, 4(2): 1178
CrossRef
ADS
Google scholar
|
[81] |
H. Meng, G. M. Xing, E. Blanco, Y. Song, L. Zhao, B. Y. Sun, X. Li, P. C.Wang, A. Korotcov, W. Li, X. J. Liang, and C. Y. Yuan, H. Chen, F. Zhao, Z. Chen, T. Sun, Z. F. Chai, M. Ferrari, and Y. L. Zhao, Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells, Nanomedicine: Nanotechnology, Biology and Medicine, 2012, 8(2): 136
CrossRef
ADS
Google scholar
|
[82] |
M. J. Bissell and D. Radisky, Putting tumours in context, Nat. Rev. Cancer, 2001, 1(1): 46
CrossRef
ADS
Google scholar
|
[83] |
R. Duncan, Polymer conjugates as anticancer nanomedicines, Nat. Rev. Cancer, 2006, 6(9): 688
CrossRef
ADS
Google scholar
|
[84] |
N. Tang, G. Du, N. Wang, C. Liu, H. Hang, and W. Liang, Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin, J. Natl. Cancer Inst., 2007, 99(13): 1004
CrossRef
ADS
Google scholar
|
[85] |
X. Lu, F. Zhang, L. Qin, F. Xiao, and W. Liang, Polymeric micelles as a drug delivery system enhance cytotoxicity of vinorelbine through more intercellular accumulation, Drug Deliv., 2010, 17(4): 255
CrossRef
ADS
Google scholar
|
[86] |
Y. Wang, R. Wang, X. Lu, W. Lu, C. Zhang, and W. Liang, Pegylated phospholipids-based self-assembly with water-soluble drugs, Pharm. Res., 2010, 27(2): 361
CrossRef
ADS
Google scholar
|
[87] |
J. Wang, Y. Wang, and W. Liang, Delivery of drugs to cell membranes by encapsulation in PEG-PE micelles, J. Control. Release, 2012, 160(3): 637
CrossRef
ADS
Google scholar
|
[88] |
J. Wang, H. Qu, L. Jin, W. Zeng, L. Qin, F. Zhang, X. Wei, W. Lu, C. Zhang, and W. Liang, Pegylated phosphotidylethanolamine inhibiting P-glycoprotein expression and enhancing retention of doxorubicin in MCF7/ADR cells, J. Pharm. Sci., 2011, 100(6): 2267
CrossRef
ADS
Google scholar
|
[89] |
T. F. Liu, D. Fu, S. Gao, Y. Z. Zhang, H. L. Sun, G. Su, and Y. J. Liu, An azide-bridged homospin single-chain magnet: [Co(2,2′-bithiazoline)(N3)2]n, J. Am. Chem. Soc., 2003, 125(46): 13976
CrossRef
ADS
Google scholar
|
[90] |
H. B. Xu, B. W. Wang, F. Pan, Z. M. Wang, and S. Gao, Stringing oxo-centered trinuclear [MnIII3O] units into single-chain magnets with formate or azide linkers, Angew. Chem. Int. Ed. Engl., 2007, 46(39): 7388
CrossRef
ADS
Google scholar
|
[91] |
M. Ding, B. Wang, Z. Wang, J. Zhang, O. Fuhr, D. Fenske, and S. Gao, Constructing single-chain magnets by supramolecular- stacking and spin canting: A case study on manganese (III) corroles, Chemistry, 2012, 18(3): 915
CrossRef
ADS
Google scholar
|
[92] |
B. Q. Ma, S. Gao, G. Su, and G. X. Xu, Cyano-bridged 4f-3d coordination polymers with a unique twodimensional topological architecture and unusual magnetic behavior, Angew. Chem. Int. Ed. Engl., 2001, 40(2): 434
CrossRef
ADS
Google scholar
|
[93] |
S. Gao, G. Su, T. Yi, and B. Q. Ma, Observation of an unusual field-dependent slow magnetic relaxation and two distinct transitions in a family of rare-earth_transition-metal complexes, Phys. Rev. B, 2001, 63(5): 054431
CrossRef
ADS
Google scholar
|
[94] |
S. D. Jiang, B. W. Wang, G. Su, Z. M. Wang, and S. Gao, A mononuclear dysprosium complex featuring singlemolecule-magnet behavior, Angew. Chem. Int. Ed. Engl., 2010, 49(41): 7448
CrossRef
ADS
Google scholar
|
[95] |
S. D. Jiang, B. W. Wang, H. L. Sun, Z. M. Wang, and S. Gao, An organometallic single-ion magnet, J. Am. Chem. Soc., 2011, 133(13): 4730
CrossRef
ADS
Google scholar
|
[96] |
G. C. Xu, W. Zhang, X. M. Ma, Y. H. Chen, L. Zhang, H. L. Cai, Z. M. Wang, R. G. Xiong, and S. Gao, Coexistence of magnetic and electric orderings in the metal-formate frameworks of [NH4][M(HCOO)3], J. Am. Chem. Soc., 2011, 133(38): 14948
CrossRef
ADS
Google scholar
|
[97] |
F. Zhao, M. Yuan, W. Zhang, and S. Gao, Monodisperse lanthanide oxysulfide nanocrystals, J. Am. Chem. Soc., 2006, 128(36): 11758
CrossRef
ADS
Google scholar
|
[98] |
F. Zhao, H. L. Sun, G. Su, and S. Gao, Synthesis and size-dependent magnetic properties of monodisperse EuS nanocrystals, Small, 2006, 2(2): 244
CrossRef
ADS
Google scholar
|
[99] |
Y. G. Yao, Q. W. Li, J. Zhang, R. Liu, L. Y. Jiao, Y. T. Zhu, and Z. F. Liu, Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions, Nat. Mater., 2007, 6(4): 283
CrossRef
ADS
Google scholar
|
[100] |
G. Hong, B. Zhang, B. H. Peng, J. Zhang, W. M. Choi, J. Y. Choi, J. M. Kim, and Z. F. Liu, Direct growth of semiconducting single-walled carbon nanotube array, J. Am. Chem. Soc., 2009, 131(41): 14642
CrossRef
ADS
Google scholar
|
[101] |
Y. G. Yao, C. Q. Feng, J. Zhang, and Z. F. Liu, “Cloning” of single-walled carbon nanotubes via open-end growth mechanism, Nano Lett., 2009, 9(4): 1673
CrossRef
ADS
Google scholar
|
[102] |
X. Yu, J. Zhang, W. Choi, J. Y. Choi, J. M. Kim, L. Gan, and Z. Liu, Cap formation engineering: from opened C60 to single-walled carbon nanotubes, Nano Lett., 2010, 10(9): 3343
CrossRef
ADS
Google scholar
|
[103] |
N. Liu, L. Fu, B. Y. Dai, K. Yan, X. Liu, R. Q. Zhao, Y. F. Zhang, and Z. F. Liu, Universal segregation growth approach to wafer-size graphene from non-noble metals, Nano Lett., 2010, 11(1): 297
CrossRef
ADS
Google scholar
|
[104] |
C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, and Z. F. Liu, Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources, Adv. Mater., 2011, 23(8): 1020
CrossRef
ADS
Google scholar
|
[105] |
B. Dai, L. Fu, Z. Zou, M. Wang, H. Xu, S. Wang, and Z. Liu, Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene, Nat. Commun., 2011, 2: 522
CrossRef
ADS
Google scholar
|
[106] |
W. H. Dang, H. L. Peng, H. Li, P. Wang, and Z. F. Liu, Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene, Nano Lett., 2010, 10(8): 2870
CrossRef
ADS
Google scholar
|
[107] |
K. Yan, H. L. Peng, Y. Zhou, H. Li, and Z. F. Liu, Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition, Nano Lett., 2011, 11(3): 1106
CrossRef
ADS
Google scholar
|
[108] |
K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, Modulation-doped growth of mosaic graphene with singlecrystalline p-n junctions for efficient photocurrent generation, Nat. Commun., 2012, 3: 1280
CrossRef
ADS
Google scholar
|
[109] |
Z. H. Pan, N. Liu, L. Fu, and Z. F. Liu, Wrinkle engineering: A new approach to massive graphene nanoribbon arrays, J. Am. Chem. Soc., 2011, 133(44): 17578
CrossRef
ADS
Google scholar
|
[110] |
Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001), Adv. Mater., 2009, 21(27): 2777
CrossRef
ADS
Google scholar
|
[111] |
J. H. Mao, L. Huang, Y. Pan, M. Gao, J. F. He, H. T. Zhou, H. M. Guo, Y. Tian, Q. Zou, L. Z. Zhang, H. G. Zhang, Y. L. Wang, S. X. Du, X. J. Zhou, A. H. C. Neto, and H. J. Gao, Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001), Appl. Phys. Lett., 2012, 100(9): 093101
CrossRef
ADS
Google scholar
|
[112] |
Z. W. Shi, R. Yang, L. C. Zhang, Y. Wang, D. H. Liu, D. X. Shi, E. G. Wang, and G. Y. Zhang, Patterning graphene with zigzag edges by self-aligned anisotropic etching, Adv. Mater., 2011, 23(27): 3061
CrossRef
ADS
Google scholar
|
[113] |
D. C. Geng, B. Wu, Y. L. Guo, L. P. Huang, Y. Z. Xue, J. Y. Chen, G. Yu, L. Jiang, W. P. Hu, and Y. Q. Liu, Uniform hexagonal graphene flakes and films grown on liquid copper surface, Proc. Natl. Acad. Sci. USA, 2012, 109(21): 7992
CrossRef
ADS
Google scholar
|
[114] |
L. B. Gao, W. C. Ren, H. L. Xu, L. Jin, Z. X. Wang, T. Ma, L. P. Ma, Z. Y. Zhang, Q. Fu, L. M. Peng, X. H. Bao, and H. M. Cheng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nat. Commun., 2012, 3: 699
CrossRef
ADS
Google scholar
|
[115] |
Z. P. Chen, W. C. Ren, L. B. Gao, B. L. Liu, S. F. Pei, and H. M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater., 2011, 10(6): 424
CrossRef
ADS
Google scholar
|
[116] |
N. Li, Z. P. Chen, W. C. Ren, F. Li, and H. M. Cheng, Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates, Proc. Natl. Acad. Sci. USA, 2012, 109(43): 17360
CrossRef
ADS
Google scholar
|
[117] |
Y. J. Wei, J. T. Wu, H. Q. Yin, X. H. Shi, R. G. Yang, and M. Dresselhaus, The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene, Nat. Mater., 2012, 11(9): 759
CrossRef
ADS
Google scholar
|
[118] |
P. H. Tan, W. P. Han, W. J. Zhao, Z. H. Wu, K. Chang, H. Wang, Y. F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, and A. C. Ferrari, The shear mode of multilayer graphene, Nat. Mater., 2012, 11(4): 294
CrossRef
ADS
Google scholar
|
[119] |
W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, Surface enhanced Raman spectroscopy on a flat graphene surface, Proc. Natl. Acad. Sci. USA, 2012, 109(24): 9281
CrossRef
ADS
Google scholar
|
[120] |
S. S. Chen, Q. Z.Wu, C. Mishra, J. Y. Kang, H. J. Zhang, K. Cho, W. W. Cai, A. A. Balandin, and R. S. Ruoff, Thermal conductivity of isotopically modified graphene, Nat. Mater., 2012, 11(3): 203
CrossRef
ADS
Google scholar
|
[121] |
Z. Xu and C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres, Nat. Commun., 2011, 2: 571
CrossRef
ADS
Google scholar
|
[122] |
Y. X. Xu, H. Bai, G. W. Lu, C. Li, and G. Q. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc., 2008, 130(18): 5856
CrossRef
ADS
Google scholar
|
[123] |
Y. Z. Tan, S. Y. Xie, R. B. Huang, and L. S. Zheng, The stabilization of fused-pentagon fullerene molecules, Nat. Chem., 2009, 1(6): 450
CrossRef
ADS
Google scholar
|
[124] |
S. Y. Xie, F. Gao, X. Lu, R. B. Huang, C. R. Wang, X. Zhang, M. L. Liu, S. L. Deng, and L. S. Zheng, Capturing the labile fullerene[50] as C50Cl10, Science, 2004, 304(5671): 699
CrossRef
ADS
Google scholar
|
[125] |
X. Lu, Z. Chen, W. Thiel, Pv. Schleyer, R. B. Huang, and L. S. Zheng, Properties of fullerene[50] and D5h decachlorofullerene[ 50]: A computational study, J. Am. Chem. Soc., 2004, 126(45): 14871
CrossRef
ADS
Google scholar
|
[126] |
X. Han, S. J. Zhou, Y. Z. Tan, X. Wu, F. Gao, Z. J. Liao, R. B. Huang, Y. Q. Feng, X. Lu, S. Y. Xie, and L. S. Zheng, Crystal structures of saturn-like C50Cl10 and pineapple-shaped C64Cl4: geometric implications of doubleand triple-pentagon-fused chlorofullerenes, Angew. Chem. Int. Ed., 2008, 47(29): 5340
CrossRef
ADS
Google scholar
|
[127] |
Y. Z. Tan, Z. J. Liao, Z. Z. Qian, R. T. Chen, X. Wu, H. Liang, X. Han, F. Zhu, S. J. Zhou, Z. Zheng, X. Lu, S. Y. Xie, R. B. Huang, and L. S. Zheng, Two I(h)-symmetry-breaking C60 isomers stabilized by chlorination, Nat. Mater., 2008, 7(10): 790
CrossRef
ADS
Google scholar
|
[128] |
Y. Z. Tan, T. Zhou, J. Bao, G. J. Shan, S. Y. Xie, R. B. Huang, and L. S. Zheng, C72Cl4: A pristine fullerene with favorable pentagon-adjacent structure, J. Am. Chem. Soc., 2010, 132(48): 17102
CrossRef
ADS
Google scholar
|
[129] |
Y. Z. Tan, J. Li, F. Zhu, X. Han, W. S. Jiang, R. B. Huang, Z. Zheng, Z. Z. Qian, R. T. Chen, Z. J. Liao, S. Y. Xie, X. Lu, and L. S. Zheng, Chlorofullerenes featuring triple sequentially fused pentagons, Nat. Chem., 2010, 2(4): 269
CrossRef
ADS
Google scholar
|
[130] |
Y. Z. Tan, R. T. Chen, Z. J. Liao, J. Li, F. Zhu, X. Lu, S. Y. Xie, J. Li, R. B. Huang, and L. S. Zheng, Carbon arc production of heptagon-containing fullerene[68], Nat. Commun., 2011, 2: 420
CrossRef
ADS
Google scholar
|
[131] |
X. W. Liu, D. S.Wang, and Y. D. Li, Synthesis and catalytic properties of bimetallic nanomaterials with various architectures, Nano Today, 2012, 7(5): 448
CrossRef
ADS
Google scholar
|
[132] |
R. Si, Y. W. Zhang, L. P. You, and C. H. Yan, Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks, Angew. Chem. Int. Ed. Engl., 2005, 44(21): 3256
CrossRef
ADS
Google scholar
|
[133] |
W. D. Shi, J. B. Yu, H. S. Wang, and H. J. Zhang, Hydrothermal synthesis of single-crystalline antimony telluride nanobelts, J. Am. Chem. Soc., 2006, 128(51): 16490
CrossRef
ADS
Google scholar
|
[134] |
X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, A general strategy for nanocrystal synthesis, Nature, 2005, 437(7055): 121
CrossRef
ADS
Google scholar
|
[135] |
X. Wang, Q. Peng, and Y. D. Li, Interface-mediated growth of monodispersed nanostructures, Acc. Chem. Res., 2007, 40(8): 635
CrossRef
ADS
Google scholar
|
[136] |
D. S. Wang and Y. D. Li, One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process, J. Am. Chem. Soc., 2010, 132(18): 6280
CrossRef
ADS
Google scholar
|
[137] |
D. S. Wang, Q. Peng, and Y. D. Li, Nanocrystalline intermetallics and alloys, Nano Res., 2010, 3(8): 574
CrossRef
ADS
Google scholar
|
[138] |
D. S. Wang and Y. D. Li, Bimetallic nanocrystals: Liquidphase synthesis and catalytic applications, Adv. Mater., 2011, 23(9): 1044
CrossRef
ADS
Google scholar
|
[139] |
D. S. Wang, P. Zhao, and Y. D. Li, General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts, Scientific Reports, 2011, 1: 37
CrossRef
ADS
Google scholar
|
[140] |
K. B. Zhou, X. Wang, X. M. Sun, Q. Peng, and Y. D. Li, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes, J. Catal., 2005, 229(1): 206
CrossRef
ADS
Google scholar
|
[141] |
X. W. Liu, K. B. Zhou, L. Wang, B. Y. Wang, and Y. D. Li, Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods, J. Am. Chem. Soc., 2009, 131(9): 3140
CrossRef
ADS
Google scholar
|
[142] |
C. Chen, C. Y. Nan, D. S. Wang, Q. Su, H. H. Duan, X. W. Liu, L. S. Zhang, D. R. Chu, W. G. Song, Q. Peng, and Y. D. Li, Mesoporous multicomponent nanocomposite colloidal spheres: ideal high-temperature stable model catalysts, Angew. Chem. Int. Ed. Engl., 2011, 50(16): 3725
CrossRef
ADS
Google scholar
|
[143] |
Y. E. Wu, S. F. Cai, D. S. Wang, W. He, and Y. D. Li, Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions, J. Am. Chem. Soc., 2012, 134(21): 8975
CrossRef
ADS
Google scholar
|
[144] |
Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer, and N. A. Kotov, Selfassembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles, Nat. Nanotechnol., 2011, 6(9): 580
CrossRef
ADS
Google scholar
|
[145] |
J. W. Chen and Y. Cao, Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices, Acc. Chem. Res., 2009, 42 (11): 1709
CrossRef
ADS
Google scholar
|
[146] |
L. J. Huo and J. H. Hou, Benzo[1,2-b:4,5-b′]dithiophenebased conjugated polymers: band gap and energy level control and their application in polymer solar cells, Polym Chem., 2011, 2 (11): 2453
CrossRef
ADS
Google scholar
|
[147] |
Y. F. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption, Acc. Chem. Res., 2012, 45(5): 723
CrossRef
ADS
Google scholar
|
[148] |
H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photon., 2009, 3 (11): 649
CrossRef
ADS
Google scholar
|
[149] |
Z. C. He, C. M. Zhong, C. M. Su, M. Xu, H. B. Wu, and Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photon., 2012, 6(9): 591
CrossRef
ADS
Google scholar
|
[150] |
L. J. Huo, S. Q. Zhang, X. Guo, F. Xu, Y. F. Li, and J. H. Hou, Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers, Angew. Chem. Int. Ed. Engl., 2011, 50(41): 9697
CrossRef
ADS
Google scholar
|
[151] |
X. Guo, C. Cui, M. Zhang, L. Huo, Y. Huang, J. Hou, and Y. Li, High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive, Energy Environ. Sci., 2012, 5(7): 7943
CrossRef
ADS
Google scholar
|
[152] |
Y. J. He, H. Y. Chen, J. H. Hou, and Y. F. Li, Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells, J. Am. Chem. Soc., 2010, 132(4): 1377
CrossRef
ADS
Google scholar
|
[153] |
Z. C. He, C. Zhang, X. F. Xu, L. J. Zhang, L. Huang, J. W. Chen, H. B. Wu, and Y. Cao, Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor, Adv. Mater., 2011, 23(27): 3086
CrossRef
ADS
Google scholar
|
[154] |
Y. Bai, J. Zhang, D. Zhou, Y. Wang, M. Zhang, and P. Wang, Engineering organic sensitizers for iodine-free dyesensitized solar cells: red-shifted current response concomitant with attenuated charge recombination, J. Am. Chem. Soc., 2011, 133(30): 11442
CrossRef
ADS
Google scholar
|
[155] |
Z. Dong, X. Lai, J. E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang, and L. Jiang, Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency, Adv. Mater., 2012, 24(8): 1046
CrossRef
ADS
Google scholar
|
[156] |
J. Zhang, J. Yu, M. Jaroniec, and J. R. Gong, Noble metalfree reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance, Nano Lett., 2012, 12 (9): 4584
CrossRef
ADS
Google scholar
|
[157] |
Q. Li, B. D. Guo, J. G. Yu, J. R. Ran, B. H. Zhang, H. J. Yan, and J. R. Gong, Highly efficient visible-lightdriven photocatalytic hydrogen production of CdS-clusterdecorated graphene nanosheets, J. Am. Chem. Soc., 2011, 133(28): 10878
CrossRef
ADS
Google scholar
|
[158] |
S. Xin, Y. G. Guo, and L. J. Wan, Nanocarbon networks for advanced rechargeable lithium batteries, Acc. Chem. Res., 2012, 45(10): 1759
CrossRef
ADS
Google scholar
|
[159] |
Z. L. Gong, Y. X. Li, G. N. He, J. Li, and Y. Yang, Nanostructured Li[sub 2]FeSiO[sub 4] electrode material synthesized through hydrothermal-assisted sol-gel process, Electrochem. Solid-State Lett., 2008, 11(5): A60
CrossRef
ADS
Google scholar
|
[160] |
F. F. Cao, Y. G. Guo, S. F. Zheng, X. L. Wu, L. Y. Jiang, R. R. Bi, L. J. Wan, and J. Maier, Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to the lithium storage problem, Chem. Mater., 2010, 22(5): 1908
CrossRef
ADS
Google scholar
|
[161] |
L. Huo, J. Hou, S. Zhang, H. Chen, and Y. Yang, A Polybenzo [1,2-b:4,5-b′] dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells, Angew. Chem. Int. Ed., 2010, 49(8): 1500
CrossRef
ADS
Google scholar
|
[162] |
D. J. Xue, S. Xin, Y. Yan, K. C. Jiang, Y. X. Yin, Y. G. Guo, and L. J. Wan, Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks, J. Am. Chem. Soc., 2012, 134(5): 2512
CrossRef
ADS
Google scholar
|
[163] |
Q. Zhang, Q. F. Dong, M. S. Zheng, and Z. W. Tian, Electrochemical energy storage device for electric vehicles, J. Electrochem. Soc., 2011, 158(5): A443
CrossRef
ADS
Google scholar
|
[164] |
L. Gu, C. Zhu, H. Li, Y. Yu, C. Li, S. Tsukimoto, J. Maier, and Y. Ikuhara, Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution, J. Am. Chem. Soc., 2011, 133(13): 4661
CrossRef
ADS
Google scholar
|
[165] |
D. W. Wang, F. Li, M. Liu, G. Q. Lu, and H. M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. Int. Ed. Engl., 2008, 47(2): 373
CrossRef
ADS
Google scholar
|
[166] |
X. F. Xie and L. Gao, Characterization of a manganese dioxide/ carbon nanotube composite fabricated using an in situ coating method, Carbon, 2007, 45(12): 2365
CrossRef
ADS
Google scholar
|
[167] |
J. J. Xu, K. Wang, S. Z. Zu, B. H. Han, and Z. X. Wei, Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage, ACS Nano, 2010, 4(9): 5019
CrossRef
ADS
Google scholar
|
[168] |
C. Chen, W. Ma, and J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev., 2010, 39(11): 4206
CrossRef
ADS
Google scholar
|
[169] |
M. Zhang, Q. Wang, C. Chen, L. Zang, W. Ma, and J. Zhao, Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: Oxygen isotope studies, Angew. Chem. Int. Ed., 2009, 48(33): 6081
CrossRef
ADS
Google scholar
|
[170] |
C. Y. Cao, J. Qu, W. S. Yan, J. F. Zhu, Z. Y. Wu, and W. G. Song, Low-cost synthesis of flowerlike-Fe2O3 nanostructures for heavy metal ion removal: Adsorption property and mechanism, Langmuir, 2012, 28(9): 4573
CrossRef
ADS
Google scholar
|
[171] |
C. Y. Cao, P. Li, J. Qu, Z. F. Dou, W. S. Yan, J. F. Zhu, Z. Y. Wu, and W. G. Song, High adsorption capacity and the key role of carbonate groups for heavy metal ion removal by basic aluminum carbonate porous nanospheres, J. Mater. Chem., 2012, 22(37): 19898
CrossRef
ADS
Google scholar
|
[172] |
C. Y. Cao, J. Qu, F. Wei, H. Liu, and W. G. Song, Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions, ACS Appl. Mater. Interfaces, 2012, 4(8): 4283
CrossRef
ADS
Google scholar
|
[173] |
W. Liu, F. Huang, Y. Liao, J. Zhang, G. Ren, Z. Zhuang, J. Zhen, Z. Lin, and C. Wang, Treatment of CrVI-containing Mg(OH)2 nanowaste, Angew. Chem. Int. Ed. Engl., 2008, 47(30): 5619
CrossRef
ADS
Google scholar
|
[174] |
W. Liu, F. Huang, Y. Wang, T. Zou, J. Zheng, and Z. Lin, Recycling MgOH2 nanoadsorbent during treating the low concentration of CrVI, Environ. Sci. Technol., 2011, 45(5): 1955
CrossRef
ADS
Google scholar
|
[175] |
Q. Cao, F. Huang, Z. Zhuang, and Z. Lin, A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water, Nanoscale, 2012, 4(7): 2423
CrossRef
ADS
Google scholar
|
[176] |
S. Guo and E. Wang, Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors, Nano Today, 2011, 6(3): 240
CrossRef
ADS
Google scholar
|
[177] |
S. Guo and S. Dong, Biomolecule-nanoparticle hybrids for electrochemical biosensors, Trends Analyt. Chem., 2009, 28(1): 96
CrossRef
ADS
Google scholar
|
[178] |
D. Wen, S. Guo, J. Zhai, L. Deng, W. Ren, and S. Dong, Pt Nanoparticles Supported on TiO2 Colloidal Spheres with Nanoporous Surface: Preparation and Use as an Enhancing Material for Biosensing Applications, J. Phys. Chem. C, 2009, 113(30): 13023
CrossRef
ADS
Google scholar
|
[179] |
S. Guo and S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev., 2011, 40(5): 2644
CrossRef
ADS
Google scholar
|
[180] |
M. Zhou, Y. Zhai, and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem., 2009, 81(14): 5603
CrossRef
ADS
Google scholar
|
[181] |
X. Wu, Y. Hu, J. Jin, N. Zhou, P. Wu, H. Zhang, and C. Cai, Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-azino-bis(3ethylbenzothiazoline-6-sulfonic acid), Anal. Chem., 2010, 82(9): 3588
CrossRef
ADS
Google scholar
|
[182] |
K. Qian, J. Wan, L. Qiao, X. Huang, J. Tang, Y. Wang, J. Kong, P. Yang, C. Yu, and B. Liu, Macroporous materials as novel catalysts for efficient and controllable proteolysis, Anal. Chem., 2009, 81(14): 5749
CrossRef
ADS
Google scholar
|
[183] |
Y. Zhang, X. Wang, W. Shan, B. Wu, H. Fan, X. Yu, Y. Tang, and P. Yang, Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis, Angew. Chem. Int. Ed. Engl., 2005, 44(4): 615
CrossRef
ADS
Google scholar
|
[184] |
H. M. Xiong, X. Y. Guan, L. H. Jin, W. W. Shen, H. J. Lu, and Y. Y. Xia, Surfactant-free synthesis of SnO2@PMMA and TiO2@PMMA core-shell nanobeads designed for peptide/protein enrichment and MALDI-TOF MS analysis, Angew. Chem. Int. Ed. Engl., 2008, 47(22): 4204
CrossRef
ADS
Google scholar
|
[185] |
R. Tian, H. Zhang, M. Ye, X. Jiang, L. Hu, X. Li, X. Bao, and H. Zou, Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis, Angew. Chem. Int. Ed. Engl., 2007, 46(6): 962
CrossRef
ADS
Google scholar
|
[186] |
S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H. Y. Chen, Functional nanoprobes for ultrasensitive detection of biomolecules, Chem. Soc. Rev., 2010, 39(11): 4234
CrossRef
ADS
Google scholar
|
[187] |
Y. M. Long, Q. L. Zhao, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, Electrochemical methodsimportant means for fabrication of fluorescent nanoparticles, Analyst, 2012, 137(4): 805
CrossRef
ADS
Google scholar
|
[188] |
D. Liu, W. Chen, K. Sun, K. Deng, W. Zhang, Z. Wang, and X. Jiang, Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles, Angew. Chem. Int. Ed. Engl., 2011, 50(18): 4103
CrossRef
ADS
Google scholar
|
[189] |
W. Qu, Y. Liu, D. Liu, Z. Wang, and X. Jiang, Coppermediated amplification allows readout of immunoassays by the naked eye, Angew. Chem. Int. Ed. Engl., 2011, 50(15): 3442
CrossRef
ADS
Google scholar
|
[190] |
M. T. Zhu, G. J. Nie, H. Meng, T. Xia, A. Nel, and Y. L. Zhao, Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate, Acc. Chem. Res., 2013, 46(3): 622
CrossRef
ADS
Google scholar
|
[191] |
B. Wang, X. He, Z. Y. Zhang, Y. L. Zhao, and W. Y. Feng, Metabolism of nanomaterials in vivo: Blood circulation and organ clearance, Acc. Chem. Res., 2013, 46(3): 761
CrossRef
ADS
Google scholar
|
[192] |
Y. Liu, Y. L. Zhao, B. Y. Sun, and C. Y. Chen, Understanding the toxicity of carbon nanotubes, Acc. Chem. Res., 2013, 46(3): 702
CrossRef
ADS
Google scholar
|
[193] |
Y. L. Zhao, G. M. Xing, and Z. F. Chai, Nanotoxicology: Are carbon nanotubes safe? Nat. Nanotech., 2008, 3: 191
CrossRef
ADS
Google scholar
|
[194] |
H. Yang, C. J. Sun, Z. L. Fan, X. Tian, L. Yan, L. B. Du, Y. Liu, C. Y. Chen, X. J. Liang, G. J. Anderson, J. A. Keelan, Y. L. Zhao, and G. J. Nie, Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy, Scientific Reports, 2012, 2(847): 1
|
[195] |
C. C. Ge, J. F. Du, L. N. Zhao, L. Wang, Y. Liu, D. Li, Y. Yang, R. H. Zhou, Y. L. Zhao, Z. F. Chai, and C. Y. Chen, Binding of blood proteins to carbon nanotubes reduces cytotoxicity, Proc. Natl. Acad. Sci. USA, 2011, 108: 16968
CrossRef
ADS
Google scholar
|
[196] |
S. G. Kang, G. Q. Zhou, P. Yang, Y. Liu, B. Y. Sun, T. Huynh, H. Meng, L. N. Zhao, G. M. Xing, C. Y. Chen, Y. L. Zhao, and R. H. Zhou, Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine, Proc. Natl. Acad. Sci. USA, 2012, 109(38): 15431
CrossRef
ADS
Google scholar
|
[197] |
Y. Y. Li, Y. L. Zhou, H. Y. Wang, S. Perrett, Y. L. Zhao, Z. Y. Tang, and G. J. Nie, Chirality of glutathione surface coating affects the cytotoxicity of quantum dots, Angew. Chem. Int. Ed., 2011, 50: 5860
CrossRef
ADS
Google scholar
|
[198] |
C. Sun, H. Yang, Y. Yuan, X. Tian, L. Wang, Y. Guo, L. Xu, J. Lei, N. Gao, G. J. Anderson, X. J. Liang, C. Chen, Y. Zhao, and G. Nie, Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging, J. Am. Chem. Soc., 2011, 133(22): 8617
CrossRef
ADS
Google scholar
|
[199] |
C. C. Ge, F. Lao, W. Li, Y. Li, C. C. Chen, Y. Qiu, X. Mao, B. Li, Z. F. Chai, and Y. L. Zhao, Quantitative analysis of metal impurities in carbon nanotubes: Efficacy of different pretreatment protocols for ICPMS spectroscopy, Anal. Chem., 2008, 80(24): 9426
CrossRef
ADS
Google scholar
|
[200] |
Y. Qu, W. Li, Y. Zhou, X. Liu, L. Zhang, L. Wang, Y. F. Li, A. Iida, Z. Tang, Y. Zhao, Z. Chai, and C. Chen, Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism, Nano Lett., 2011, 11(8): 3174
CrossRef
ADS
Google scholar
|
[201] |
X. He, Z. Y. Zhang, J. S. Liu, Y. H. Ma, P. Zhang, Y. Y. Li, Z. Q. Wu, Y. L. Zhao, and Z. F. Chai, Quantifying the biodistribution of nanoparticles, Nat. Nanotechnol., 2011, 6(12): 755
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |