New frontiers in metamaterials research: Novel electronic materials and inhomogeneous metasurfaces

Kun Ding, Shi-Yi Xiao, Lei Zhou

PDF(560 KB)
PDF(560 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (4) : 386-393. DOI: 10.1007/s11467-013-0322-z

New frontiers in metamaterials research: Novel electronic materials and inhomogeneous metasurfaces

Author information +
History +

Abstract

In reviewing some recent work in metamaterials, we highlight two exciting new frontiers just emerging in this field–metamaterials made by new electronic materials (particularly graphene) and inhomogeneous metasurfaces to control light wave-fronts.

Keywords

metamaterial / new electronic material / graphene / inhomogeneous metasurfaces / wavefront control

Cite this article

Download citation ▾
Kun Ding, Shi-Yi Xiao, Lei Zhou. New frontiers in metamaterials research: Novel electronic materials and inhomogeneous metasurfaces. Front. Phys., 2013, 8(4): 386‒393 https://doi.org/10.1007/s11467-013-0322-z

References

[1]
V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ϵ and μ, Sov. Phys. Usp., 1968, 10(4): 509
CrossRef ADS Google scholar
[2]
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., 1999, 47: 2075
CrossRef ADS Google scholar
[3]
R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science, 2001, 292(5514): 77
CrossRef ADS Google scholar
[4]
J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett., 2000, 85(18): 3966
CrossRef ADS Pubmed Google scholar
[5]
N. Fang, H. Lee, C. Sun, and X. Zhang, Sub-diffractionlimited optical imaging with a silver superlens, Science, 2005, 308(5721): 534
CrossRef ADS Pubmed Google scholar
[6]
P. Chaturvedi and N. X. Fang, Sub-diffiraction-limited far-field imaging in infrared, Front. Phys. China, 2010, 5(3): 324
CrossRef ADS Google scholar
[7]
J. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials, Phys. Rev. Lett., 2007, 99(6): 063908
CrossRef ADS Pubmed Google scholar
[8]
J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, Optical metamaterial for polarization control, Phys. Rev. A, 2009, 80(2): 023807
CrossRef ADS Google scholar
[9]
J. M. Hao, M. Qiu, and L. Zhou, Manipulate light polarizations with metamaterials: From microwave to visible, Front. Phys. China, 2010, 5(3): 291
CrossRef ADS Google scholar
[10]
W. Sun, Q. He, J. Hao, and L. Zhou, A transparent metamaterial to manipulate electromagnetic wave polarizations, Opt. Lett., 2011, 36(6): 927
CrossRef ADS Pubmed Google scholar
[11]
C. M. Soukoulis and M. Wegener, Optical metamaterials-More bulky and less lossy, Science, 2010, 330(6011): 1633
CrossRef ADS Pubmed Google scholar
[12]
U. Leonhardt, Optical conformal mapping, Science, 2006, 312(5781): 1777
CrossRef ADS Pubmed Google scholar
[13]
J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science, 2006, 312(5781): 1780
CrossRef ADS Pubmed Google scholar
[14]
H. Y. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater., 2010, 9(5): 387
CrossRef ADS Pubmed Google scholar
[15]
Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett., 2009, 102(25): 253902
CrossRef ADS Pubmed Google scholar
[16]
Y. Lai, J. Ng, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Illusion optics, Front. Phys. China, 2010, 5(3): 308
CrossRef ADS Google scholar
[17]
Y. Shen, K. Ding, W. J. Sun, and L. Zhou, A chirality switching device designed with transformation optics, Opt. Express, 2010, 18(20): 21419
CrossRef ADS Google scholar
[18]
D. Bao, E. Kallos, W. X. Tang, C. Argyropoulos, Y. Hao, and T. J. Cui, A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders, Front. Phys. China, 2010, 5(3): 319
CrossRef ADS Google scholar
[19]
Z. L. Mei, J. Bai, and T. J. Cui, Experimental verification of a broadband planar focusing antenna based on transformation optics, New J. Phys., 2011, 13(6): 063028
CrossRef ADS Google scholar
[20]
Z. L. Mei, J. Bai, T. M. Niu, and T. J. Cui, A half Maxwell fish-eye lens antenna based on gradient-index metamaterials, IEEE Trans. Antenn. Propag., 2012, 60(1): 398
CrossRef ADS Google scholar
[21]
Z. L. Mei, J. Bai, and T. J. Cui, Experimental verification of a broadband planar focusing antenna based on transformation optics, New J. Phys., 2011, 13(6): 063028
CrossRef ADS Google scholar
[22]
C. Joseph, Quantum Theory of the Solid State, New York: Academic Press, 1976
[23]
A. Boltasseva and H. Atwater, Low-loss plasmonic metamaterials, Science, 2011, 331(6015): 290
CrossRef ADS Pubmed Google scholar
[24]
N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science, 2011, 334(6054): 333
CrossRef ADS Pubmed Google scholar
[25]
S. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater., 2012, 11(5): 426
CrossRef ADS Pubmed Google scholar
[26]
K. Ding, Y. Shen, J. Ng, and L. Zhou, Europhys. Lett., 2013 (submitted)
[27]
H. Yoon, K. Y. M. Yeung, V. Umansky, and D. Ham, A Newtonian approach to extraordinarily strong negative refraction, Nature, 2012, 488(7409): 65
CrossRef ADS Pubmed Google scholar
[28]
Y. Sun, B. Edwards, A. Alù, and N. Engheta, Experimental realization of optical lumped nanocircuits at infrared wavelengths, Nat. Mater., 2012, 11(3): 208
CrossRef ADS Pubmed Google scholar
[29]
J. N. Chen, M. Badioli, P. Alonso-Gonzlez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. Garcia de Abajo, R. Hillenbrand, and F. Koppens, Optical nanoimaging of gate-tunable graphene plasmons, Nature, 2012, 487: 77
Pubmed
[30]
Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature, 2012, 487: 82
Pubmed
[31]
L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, and Y. Ron Shen, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol., 2011, 6(10): 630
CrossRef ADS Pubmed Google scholar
[32]
A. Vakil and N. Engheta, Transformation optics using graphene, Science, 2011, 332(6035): 1291
CrossRef ADS Pubmed Google scholar
[33]
A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. MartinMoreno, Fields radiated by a nanoemitter in a grapheme sheet, Phys. Rev. B, 2011, 84(19): 195446
CrossRef ADS Google scholar
[34]
F. H. L. Koppens, D. E. Chang, and F. Javier Garcia de Abajo, Graphene plasmonics: A platform for strong lightmatter interactions, Nano Lett., 2011, 11(8): 3370
CrossRef ADS Pubmed Google scholar
[35]
X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Broadband light bending with plasmonic nanoantennas, Science, 2012, 335(6067): 427
CrossRef ADS Pubmed Google scholar
[36]
M. A. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy, Proc. Natl. Acad. Sci. USA, 2012, 109(31): 12364
CrossRef ADS Google scholar
[37]
R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, Modeling nanoscale V-shaped antennas for the design of optical phased arrays, Phys. Rev. B, 2012, 85(15): 155457
CrossRef ADS Google scholar
[38]
S. L. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Y. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, High-efficiency broadband anomalous reflection by gradient meta-surfaces, Nano Lett., 2012, 12(12): 6223
CrossRef ADS Pubmed Google scholar
[39]
X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, Flat metasurfaces to focus electromagnetic waves in reflection geometry, Opt. Lett., 2012, 37(23): 4940
CrossRef ADS Pubmed Google scholar
[40]
X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, Dual-polarity plasmonic metalens for visible light, Nat. Commun., 2012, 3: 1198
CrossRef ADS Pubmed Google scholar
[41]
A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, Broadband focusing flat mirrors based on plasmonic gradient metasurfaces, Nano Lett., http://dx.doi.org/10.1021/nl304761m
CrossRef ADS Google scholar
[42]
F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces, Nano Lett., 2012, 12(9): 4932
CrossRef ADS Pubmed Google scholar
[43]
P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Ultra-thin plasmonic optical vortex plate based on phase discontinuities, Appl. Phys. Lett., 2012, 100(1): 013101
CrossRef ADS Google scholar
[44]
F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities, Nano Lett., 2012, 12(3): 1702
CrossRef ADS Pubmed Google scholar
[45]
N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, A broadband, background-free quarter-wave plate based on plasmonic metasurfaces, Nano Lett., 2012, 12(12): 6328
CrossRef ADS Pubmed Google scholar
[46]
L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, Dispersionless phase discontinuities for controlling light propagation, Nano Lett., 2012, 12(11): 5750
CrossRef ADS Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(560 KB)

Accesses

Citations

Detail

Sections
Recommended

/