New frontiers in metamaterials research: Novel electronic materials and inhomogeneous metasurfaces
Kun Ding, Shi-Yi Xiao, Lei Zhou
New frontiers in metamaterials research: Novel electronic materials and inhomogeneous metasurfaces
In reviewing some recent work in metamaterials, we highlight two exciting new frontiers just emerging in this field–metamaterials made by new electronic materials (particularly graphene) and inhomogeneous metasurfaces to control light wave-fronts.
metamaterial / new electronic material / graphene / inhomogeneous metasurfaces / wavefront control
[1] |
V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ϵ and μ, Sov. Phys. Usp., 1968, 10(4): 509
CrossRef
ADS
Google scholar
|
[2] |
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., 1999, 47: 2075
CrossRef
ADS
Google scholar
|
[3] |
R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science, 2001, 292(5514): 77
CrossRef
ADS
Google scholar
|
[4] |
J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett., 2000, 85(18): 3966
CrossRef
ADS
Pubmed
Google scholar
|
[5] |
N. Fang, H. Lee, C. Sun, and X. Zhang, Sub-diffractionlimited optical imaging with a silver superlens, Science, 2005, 308(5721): 534
CrossRef
ADS
Pubmed
Google scholar
|
[6] |
P. Chaturvedi and N. X. Fang, Sub-diffiraction-limited far-field imaging in infrared, Front. Phys. China, 2010, 5(3): 324
CrossRef
ADS
Google scholar
|
[7] |
J. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials, Phys. Rev. Lett., 2007, 99(6): 063908
CrossRef
ADS
Pubmed
Google scholar
|
[8] |
J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, Optical metamaterial for polarization control, Phys. Rev. A, 2009, 80(2): 023807
CrossRef
ADS
Google scholar
|
[9] |
J. M. Hao, M. Qiu, and L. Zhou, Manipulate light polarizations with metamaterials: From microwave to visible, Front. Phys. China, 2010, 5(3): 291
CrossRef
ADS
Google scholar
|
[10] |
W. Sun, Q. He, J. Hao, and L. Zhou, A transparent metamaterial to manipulate electromagnetic wave polarizations, Opt. Lett., 2011, 36(6): 927
CrossRef
ADS
Pubmed
Google scholar
|
[11] |
C. M. Soukoulis and M. Wegener, Optical metamaterials-More bulky and less lossy, Science, 2010, 330(6011): 1633
CrossRef
ADS
Pubmed
Google scholar
|
[12] |
U. Leonhardt, Optical conformal mapping, Science, 2006, 312(5781): 1777
CrossRef
ADS
Pubmed
Google scholar
|
[13] |
J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science, 2006, 312(5781): 1780
CrossRef
ADS
Pubmed
Google scholar
|
[14] |
H. Y. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater., 2010, 9(5): 387
CrossRef
ADS
Pubmed
Google scholar
|
[15] |
Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett., 2009, 102(25): 253902
CrossRef
ADS
Pubmed
Google scholar
|
[16] |
Y. Lai, J. Ng, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Illusion optics, Front. Phys. China, 2010, 5(3): 308
CrossRef
ADS
Google scholar
|
[17] |
Y. Shen, K. Ding, W. J. Sun, and L. Zhou, A chirality switching device designed with transformation optics, Opt. Express, 2010, 18(20): 21419
CrossRef
ADS
Google scholar
|
[18] |
D. Bao, E. Kallos, W. X. Tang, C. Argyropoulos, Y. Hao, and T. J. Cui, A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders, Front. Phys. China, 2010, 5(3): 319
CrossRef
ADS
Google scholar
|
[19] |
Z. L. Mei, J. Bai, and T. J. Cui, Experimental verification of a broadband planar focusing antenna based on transformation optics, New J. Phys., 2011, 13(6): 063028
CrossRef
ADS
Google scholar
|
[20] |
Z. L. Mei, J. Bai, T. M. Niu, and T. J. Cui, A half Maxwell fish-eye lens antenna based on gradient-index metamaterials, IEEE Trans. Antenn. Propag., 2012, 60(1): 398
CrossRef
ADS
Google scholar
|
[21] |
Z. L. Mei, J. Bai, and T. J. Cui, Experimental verification of a broadband planar focusing antenna based on transformation optics, New J. Phys., 2011, 13(6): 063028
CrossRef
ADS
Google scholar
|
[22] |
C. Joseph, Quantum Theory of the Solid State, New York: Academic Press, 1976
|
[23] |
A. Boltasseva and H. Atwater, Low-loss plasmonic metamaterials, Science, 2011, 331(6015): 290
CrossRef
ADS
Pubmed
Google scholar
|
[24] |
N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science, 2011, 334(6054): 333
CrossRef
ADS
Pubmed
Google scholar
|
[25] |
S. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater., 2012, 11(5): 426
CrossRef
ADS
Pubmed
Google scholar
|
[26] |
K. Ding, Y. Shen, J. Ng, and L. Zhou, Europhys. Lett., 2013 (submitted)
|
[27] |
H. Yoon, K. Y. M. Yeung, V. Umansky, and D. Ham, A Newtonian approach to extraordinarily strong negative refraction, Nature, 2012, 488(7409): 65
CrossRef
ADS
Pubmed
Google scholar
|
[28] |
Y. Sun, B. Edwards, A. Alù, and N. Engheta, Experimental realization of optical lumped nanocircuits at infrared wavelengths, Nat. Mater., 2012, 11(3): 208
CrossRef
ADS
Pubmed
Google scholar
|
[29] |
J. N. Chen, M. Badioli, P. Alonso-Gonzlez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. Garcia de Abajo, R. Hillenbrand, and F. Koppens, Optical nanoimaging of gate-tunable graphene plasmons, Nature, 2012, 487: 77
Pubmed
|
[30] |
Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature, 2012, 487: 82
Pubmed
|
[31] |
L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, and Y. Ron Shen, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol., 2011, 6(10): 630
CrossRef
ADS
Pubmed
Google scholar
|
[32] |
A. Vakil and N. Engheta, Transformation optics using graphene, Science, 2011, 332(6035): 1291
CrossRef
ADS
Pubmed
Google scholar
|
[33] |
A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. MartinMoreno, Fields radiated by a nanoemitter in a grapheme sheet, Phys. Rev. B, 2011, 84(19): 195446
CrossRef
ADS
Google scholar
|
[34] |
F. H. L. Koppens, D. E. Chang, and F. Javier Garcia de Abajo, Graphene plasmonics: A platform for strong lightmatter interactions, Nano Lett., 2011, 11(8): 3370
CrossRef
ADS
Pubmed
Google scholar
|
[35] |
X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Broadband light bending with plasmonic nanoantennas, Science, 2012, 335(6067): 427
CrossRef
ADS
Pubmed
Google scholar
|
[36] |
M. A. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy, Proc. Natl. Acad. Sci. USA, 2012, 109(31): 12364
CrossRef
ADS
Google scholar
|
[37] |
R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, Modeling nanoscale V-shaped antennas for the design of optical phased arrays, Phys. Rev. B, 2012, 85(15): 155457
CrossRef
ADS
Google scholar
|
[38] |
S. L. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Y. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, High-efficiency broadband anomalous reflection by gradient meta-surfaces, Nano Lett., 2012, 12(12): 6223
CrossRef
ADS
Pubmed
Google scholar
|
[39] |
X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, Flat metasurfaces to focus electromagnetic waves in reflection geometry, Opt. Lett., 2012, 37(23): 4940
CrossRef
ADS
Pubmed
Google scholar
|
[40] |
X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, Dual-polarity plasmonic metalens for visible light, Nat. Commun., 2012, 3: 1198
CrossRef
ADS
Pubmed
Google scholar
|
[41] |
A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, Broadband focusing flat mirrors based on plasmonic gradient metasurfaces, Nano Lett., http://dx.doi.org/10.1021/nl304761m
CrossRef
ADS
Google scholar
|
[42] |
F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces, Nano Lett., 2012, 12(9): 4932
CrossRef
ADS
Pubmed
Google scholar
|
[43] |
P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Ultra-thin plasmonic optical vortex plate based on phase discontinuities, Appl. Phys. Lett., 2012, 100(1): 013101
CrossRef
ADS
Google scholar
|
[44] |
F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities, Nano Lett., 2012, 12(3): 1702
CrossRef
ADS
Pubmed
Google scholar
|
[45] |
N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, A broadband, background-free quarter-wave plate based on plasmonic metasurfaces, Nano Lett., 2012, 12(12): 6328
CrossRef
ADS
Pubmed
Google scholar
|
[46] |
L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, Dispersionless phase discontinuities for controlling light propagation, Nano Lett., 2012, 12(11): 5750
CrossRef
ADS
Pubmed
Google scholar
|
/
〈 | 〉 |