Dynamics of Bose–Einstein condensates in a one-dimensional optical lattice with double-well potential

Han-Lei Zheng, Qiang Gu

PDF(457 KB)
PDF(457 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (4) : 375-380. DOI: 10.1007/s11467-013-0321-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynamics of Bose–Einstein condensates in a one-dimensional optical lattice with double-well potential

Author information +
History +

Abstract

We study dynamical behaviors of the weakly interacting Bose–Einstein condensate in the onedimensional optical lattice with an overall double-well potential by solving the time-dependent Gross–Pitaevskii equation. It is observed that the double-well potential dominates the dynamics of such a system even if the lattice depth is several times larger than the height of the double-well potential. This result suggests that the condensate flows without resistance in the periodic lattice just like the case of a single particle moving in periodic potentials. Nevertheless, the effective mass of atoms is increased, which can be experimentally verified since it is connected to the Josephson oscillation frequency. Moreover, the periodic lattice enhances the nonlinearity of the double-well condensate, making the condensate more “self-trapped” in the π -mode self-trapping regime.

Keywords

Bose–Einstein condensate / double-well potential / optical lattice / dynamical behavior

Cite this article

Download citation ▾
Han-Lei Zheng, Qiang Gu. Dynamics of Bose–Einstein condensates in a one-dimensional optical lattice with double-well potential. Front. Phys., 2013, 8(4): 375‒380 https://doi.org/10.1007/s11467-013-0321-0

References

[1]
O. Morsch and M. Oberthaler, Dynamics of Bose–Einstein condensates in optical lattices, Rev. Mod. Phys., 2006, 78(1): 179 and references theirin
CrossRef ADS Google scholar
[2]
P. W. Anderson, Concepts in Solid: Lectures on the Theory of Solds, Singapore: World Scientific, 1997
[3]
V. S. Letokhov and V. G. Minogin, Quantum motions of ultracooled atoms in resonant laser field, Phys. Lett. A, 1997, 61(6): 370
CrossRef ADS Google scholar
[4]
M. Wilkens, E. Schumacher, and P. Meystre, Band theory of a common model of atom optics, Phys. Rev. A, 1991, 44(5): 3130
CrossRef ADS Pubmed Google scholar
[5]
Q. Niu, X. G. Zhao, G. A. Georgakis, and M. G. Raizen, Atomic Landau–Zener tunneling and Wannier–Stark ladders in optical potentials, Phys. Rev. Lett., 1996, 76(24): 4504
CrossRef ADS Pubmed Google scholar
[6]
M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Bloch oscillations of atoms in an optical potential, Phys. Rev. Lett., 1996, 76(24): 4508
CrossRef ADS Pubmed Google scholar
[7]
S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Qian Niu, and M. G. Raizen, Observation of atomic Wannier–Stark ladders in an accelerating optical potential, Phys. Rev. Lett., 1996, 76(24): 4512
CrossRef ADS Pubmed Google scholar
[8]
B. P. Anderson, and M. A. Kasevich, Macroscopic quantum interference from atomic tunnel arrays, Science, 1998, 282(5394): 1686
CrossRef ADS Pubmed Google scholar
[9]
O.Morsch, J. H. Müller, M. Cristiani, D. Ciampini, and E. Arimondo, Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices, Phys. Rev. Lett., 2001, 87(14): 140402
CrossRef ADS Pubmed Google scholar
[10]
S. Burger, F. S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. L. Chiofalo, and M. P. Tosi, Superfluid and dissipative dynamics of a Bose–Einstein condensate in a periodic optical potential, Phys. Rev. Lett., 2001, 86(20): 4447
CrossRef ADS Pubmed Google scholar
[11]
F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Josephson junction arrays with Bose–Einstein condensates, Science, 2001, 293 (5531): 843
CrossRef ADS Pubmed Google scholar
[12]
J. Javanainen, Oscillatory exchange of atoms between traps containing Bose condensates, Phys. Rev. Lett., 1986, 57(25): 3164
CrossRef ADS Pubmed Google scholar
[13]
M. W. Jack, M. J. Collett, and D. F. Walls, Coherent quantum tunneling between two Bose–Einstein condensates, Phys. Rev. A, 1996, 54(6): R4625
CrossRef ADS Pubmed Google scholar
[14]
G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Quantum dynamics of an atomic Bose–Einstein condensate in a double-well potential, Phys. Rev. A, 1997, 55(6): 4318
CrossRef ADS Google scholar
[15]
J. Ruostekoski and D. F. Walls, Bose–Einstein condensate in a double-well potential as an open quantum system, Phys . Rev. A, 1998, 58(1): R50
CrossRef ADS Google scholar
[16]
I. Zapata, F. Sols, and A. J. Leggett, Josephson effect between trapped Bose–Einstein condensates, Phys. Rev. A, 1998, 57(1): R28
CrossRef ADS Google scholar
[17]
A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett., 1997, 79(25): 4950
CrossRef ADS Google scholar
[18]
S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping, Phys. Rev. A, 1999, 59(1): 620
CrossRef ADS Google scholar
[19]
S. Giovanazzi, A. Smerzi, and S. Fantoni, Josephson effects in dilute Bose–Einstein condensates, Phys. Rev. Lett., 2000, 84(20): 4521
CrossRef ADS Pubmed Google scholar
[20]
A. Vardi and J. R. Anglin, Bose–Einstein condensates beyond mean field theory: Quantum backreaction as decoherence, Phys. Rev. Lett., 2001, 86(4): 568
CrossRef ADS Pubmed Google scholar
[21]
M. Trujillo-Martinez, A. Posazhennikova, and J. Kroha, Nonequilibrium Josephson oscillations in Bose–Einstein condensates without dissipation, Phys. Rev. Lett., 2009, 103(10): 105302
CrossRef ADS Pubmed Google scholar
[22]
M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Observation of qnterference between two Bose condensates, Science, 1997, 275(5300): 637
CrossRef ADS Pubmed Google scholar
[23]
M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett., 2005, 95(1): 010402
CrossRef ADS Pubmed Google scholar
[24]
S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose–Einstein condensate, Nature, 2007, 449(7162): 579
CrossRef ADS Pubmed Google scholar
[25]
R. Gati and M. K. Oberthaler, A bosonic Josephson junction, J.Phys.B:At.Mol.Opt.Phys., 2007, 40(10): R61
CrossRef ADS Google scholar
[26]
M. Melé-Messeguer, B. Juliá-Díaz, M. Guilleumas, A. Polls, and A. Sanpera, Weakly linked binary mixtures of F=187 Rb Bose–Einstein condensates, New J. Phys., 2011, 13(3): 033012
CrossRef ADS Google scholar
[27]
M. Saba, T. A. Pasquini, C. Sanner, Y. Shin, W. Ketterle, and D. E. Pritchard, Light scattering to determine the relative phase of two Bose–Einstein condensates, Science, 2005, 307(5717): 1945
CrossRef ADS Google scholar
[28]
H. Zheng, Y. Hao, and Q. Gu, Dissipation effect in the double-well Bose–Einstein condensate, Eur. Phys . J. D, 2012, 66: 320
CrossRef ADS Google scholar
[29]
The lattice will be more perfect if it consists of more lattice sites. We choose k= 7 in order to show the lattice feature clearly in figures.
[30]
H. C. Jiang, Z. Y. Weng, and T. Xiang, Superfluid-Mottinsulator transition in a one-dimensional optical lattice with double-well potentials, Phys. Rev. B, 2007, 76(22): 224515
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(457 KB)

Accesses

Citations

Detail

Sections
Recommended

/