Dynamics of Bose–Einstein condensates in a one-dimensional optical lattice with double-well potential
Han-Lei Zheng, Qiang Gu
Dynamics of Bose–Einstein condensates in a one-dimensional optical lattice with double-well potential
We study dynamical behaviors of the weakly interacting Bose–Einstein condensate in the onedimensional optical lattice with an overall double-well potential by solving the time-dependent Gross–Pitaevskii equation. It is observed that the double-well potential dominates the dynamics of such a system even if the lattice depth is several times larger than the height of the double-well potential. This result suggests that the condensate flows without resistance in the periodic lattice just like the case of a single particle moving in periodic potentials. Nevertheless, the effective mass of atoms is increased, which can be experimentally verified since it is connected to the Josephson oscillation frequency. Moreover, the periodic lattice enhances the nonlinearity of the double-well condensate, making the condensate more “self-trapped” in the π -mode self-trapping regime.
Bose–Einstein condensate / double-well potential / optical lattice / dynamical behavior
[1] |
O. Morsch and M. Oberthaler, Dynamics of Bose–Einstein condensates in optical lattices, Rev. Mod. Phys., 2006, 78(1): 179 and references theirin
CrossRef
ADS
Google scholar
|
[2] |
P. W. Anderson, Concepts in Solid: Lectures on the Theory of Solds, Singapore: World Scientific, 1997
|
[3] |
V. S. Letokhov and V. G. Minogin, Quantum motions of ultracooled atoms in resonant laser field, Phys. Lett. A, 1997, 61(6): 370
CrossRef
ADS
Google scholar
|
[4] |
M. Wilkens, E. Schumacher, and P. Meystre, Band theory of a common model of atom optics, Phys. Rev. A, 1991, 44(5): 3130
CrossRef
ADS
Pubmed
Google scholar
|
[5] |
Q. Niu, X. G. Zhao, G. A. Georgakis, and M. G. Raizen, Atomic Landau–Zener tunneling and Wannier–Stark ladders in optical potentials, Phys. Rev. Lett., 1996, 76(24): 4504
CrossRef
ADS
Pubmed
Google scholar
|
[6] |
M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Bloch oscillations of atoms in an optical potential, Phys. Rev. Lett., 1996, 76(24): 4508
CrossRef
ADS
Pubmed
Google scholar
|
[7] |
S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Qian Niu, and M. G. Raizen, Observation of atomic Wannier–Stark ladders in an accelerating optical potential, Phys. Rev. Lett., 1996, 76(24): 4512
CrossRef
ADS
Pubmed
Google scholar
|
[8] |
B. P. Anderson, and M. A. Kasevich, Macroscopic quantum interference from atomic tunnel arrays, Science, 1998, 282(5394): 1686
CrossRef
ADS
Pubmed
Google scholar
|
[9] |
O.Morsch, J. H. Müller, M. Cristiani, D. Ciampini, and E. Arimondo, Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices, Phys. Rev. Lett., 2001, 87(14): 140402
CrossRef
ADS
Pubmed
Google scholar
|
[10] |
S. Burger, F. S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. L. Chiofalo, and M. P. Tosi, Superfluid and dissipative dynamics of a Bose–Einstein condensate in a periodic optical potential, Phys. Rev. Lett., 2001, 86(20): 4447
CrossRef
ADS
Pubmed
Google scholar
|
[11] |
F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Josephson junction arrays with Bose–Einstein condensates, Science, 2001, 293 (5531): 843
CrossRef
ADS
Pubmed
Google scholar
|
[12] |
J. Javanainen, Oscillatory exchange of atoms between traps containing Bose condensates, Phys. Rev. Lett., 1986, 57(25): 3164
CrossRef
ADS
Pubmed
Google scholar
|
[13] |
M. W. Jack, M. J. Collett, and D. F. Walls, Coherent quantum tunneling between two Bose–Einstein condensates, Phys. Rev. A, 1996, 54(6): R4625
CrossRef
ADS
Pubmed
Google scholar
|
[14] |
G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Quantum dynamics of an atomic Bose–Einstein condensate in a double-well potential, Phys. Rev. A, 1997, 55(6): 4318
CrossRef
ADS
Google scholar
|
[15] |
J. Ruostekoski and D. F. Walls, Bose–Einstein condensate in a double-well potential as an open quantum system, Phys . Rev. A, 1998, 58(1): R50
CrossRef
ADS
Google scholar
|
[16] |
I. Zapata, F. Sols, and A. J. Leggett, Josephson effect between trapped Bose–Einstein condensates, Phys. Rev. A, 1998, 57(1): R28
CrossRef
ADS
Google scholar
|
[17] |
A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett., 1997, 79(25): 4950
CrossRef
ADS
Google scholar
|
[18] |
S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping, Phys. Rev. A, 1999, 59(1): 620
CrossRef
ADS
Google scholar
|
[19] |
S. Giovanazzi, A. Smerzi, and S. Fantoni, Josephson effects in dilute Bose–Einstein condensates, Phys. Rev. Lett., 2000, 84(20): 4521
CrossRef
ADS
Pubmed
Google scholar
|
[20] |
A. Vardi and J. R. Anglin, Bose–Einstein condensates beyond mean field theory: Quantum backreaction as decoherence, Phys. Rev. Lett., 2001, 86(4): 568
CrossRef
ADS
Pubmed
Google scholar
|
[21] |
M. Trujillo-Martinez, A. Posazhennikova, and J. Kroha, Nonequilibrium Josephson oscillations in Bose–Einstein condensates without dissipation, Phys. Rev. Lett., 2009, 103(10): 105302
CrossRef
ADS
Pubmed
Google scholar
|
[22] |
M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Observation of qnterference between two Bose condensates, Science, 1997, 275(5300): 637
CrossRef
ADS
Pubmed
Google scholar
|
[23] |
M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett., 2005, 95(1): 010402
CrossRef
ADS
Pubmed
Google scholar
|
[24] |
S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose–Einstein condensate, Nature, 2007, 449(7162): 579
CrossRef
ADS
Pubmed
Google scholar
|
[25] |
R. Gati and M. K. Oberthaler, A bosonic Josephson junction, J.Phys.B:At.Mol.Opt.Phys., 2007, 40(10): R61
CrossRef
ADS
Google scholar
|
[26] |
M. Melé-Messeguer, B. Juliá-Díaz, M. Guilleumas, A. Polls, and A. Sanpera, Weakly linked binary mixtures of F=187 Rb Bose–Einstein condensates, New J. Phys., 2011, 13(3): 033012
CrossRef
ADS
Google scholar
|
[27] |
M. Saba, T. A. Pasquini, C. Sanner, Y. Shin, W. Ketterle, and D. E. Pritchard, Light scattering to determine the relative phase of two Bose–Einstein condensates, Science, 2005, 307(5717): 1945
CrossRef
ADS
Google scholar
|
[28] |
H. Zheng, Y. Hao, and Q. Gu, Dissipation effect in the double-well Bose–Einstein condensate, Eur. Phys . J. D, 2012, 66: 320
CrossRef
ADS
Google scholar
|
[29] |
The lattice will be more perfect if it consists of more lattice sites. We choose k= 7 in order to show the lattice feature clearly in figures.
|
[30] |
H. C. Jiang, Z. Y. Weng, and T. Xiang, Superfluid-Mottinsulator transition in a one-dimensional optical lattice with double-well potentials, Phys. Rev. B, 2007, 76(22): 224515
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |