PDF
(457KB)
Abstract
We study dynamical behaviors of the weakly interacting Bose–Einstein condensate in the onedimensional optical lattice with an overall double-well potential by solving the time-dependent Gross–Pitaevskii equation. It is observed that the double-well potential dominates the dynamics of such a system even if the lattice depth is several times larger than the height of the double-well potential. This result suggests that the condensate flows without resistance in the periodic lattice just like the case of a single particle moving in periodic potentials. Nevertheless, the effective mass of atoms is increased, which can be experimentally verified since it is connected to the Josephson oscillation frequency. Moreover, the periodic lattice enhances the nonlinearity of the double-well condensate, making the condensate more “self-trapped” in the π -mode self-trapping regime.
Keywords
Bose–Einstein condensate
/
double-well potential
/
optical lattice
/
dynamical behavior
Cite this article
Download citation ▾
Han-Lei Zheng, Qiang Gu.
Dynamics of Bose–Einstein condensates in a one-dimensional optical lattice with double-well potential.
Front. Phys., 2013, 8(4): 375-380 DOI:10.1007/s11467-013-0321-0
| [1] |
O. Morsch and M. Oberthaler, Dynamics of Bose–Einstein condensates in optical lattices, Rev. Mod. Phys., 2006, 78(1): 179 and references theirin
|
| [2] |
P. W. Anderson, Concepts in Solid: Lectures on the Theory of Solds, Singapore: World Scientific, 1997
|
| [3] |
V. S. Letokhov and V. G. Minogin, Quantum motions of ultracooled atoms in resonant laser field, Phys. Lett. A, 1997, 61(6): 370
|
| [4] |
M. Wilkens, E. Schumacher, and P. Meystre, Band theory of a common model of atom optics, Phys. Rev. A, 1991, 44(5): 3130
|
| [5] |
Q. Niu, X. G. Zhao, G. A. Georgakis, and M. G. Raizen, Atomic Landau–Zener tunneling and Wannier–Stark ladders in optical potentials, Phys. Rev. Lett., 1996, 76(24): 4504
|
| [6] |
M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Bloch oscillations of atoms in an optical potential, Phys. Rev. Lett., 1996, 76(24): 4508
|
| [7] |
S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Qian Niu, and M. G. Raizen, Observation of atomic Wannier–Stark ladders in an accelerating optical potential, Phys. Rev. Lett., 1996, 76(24): 4512
|
| [8] |
B. P. Anderson, and M. A. Kasevich, Macroscopic quantum interference from atomic tunnel arrays, Science, 1998, 282(5394): 1686
|
| [9] |
O.Morsch, J. H. Müller, M. Cristiani, D. Ciampini, and E. Arimondo, Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices, Phys. Rev. Lett., 2001, 87(14): 140402
|
| [10] |
S. Burger, F. S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M. L. Chiofalo, and M. P. Tosi, Superfluid and dissipative dynamics of a Bose–Einstein condensate in a periodic optical potential, Phys. Rev. Lett., 2001, 86(20): 4447
|
| [11] |
F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Josephson junction arrays with Bose–Einstein condensates, Science, 2001, 293 (5531): 843
|
| [12] |
J. Javanainen, Oscillatory exchange of atoms between traps containing Bose condensates, Phys. Rev. Lett., 1986, 57(25): 3164
|
| [13] |
M. W. Jack, M. J. Collett, and D. F. Walls, Coherent quantum tunneling between two Bose–Einstein condensates, Phys. Rev. A, 1996, 54(6): R4625
|
| [14] |
G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Quantum dynamics of an atomic Bose–Einstein condensate in a double-well potential, Phys. Rev. A, 1997, 55(6): 4318
|
| [15] |
J. Ruostekoski and D. F. Walls, Bose–Einstein condensate in a double-well potential as an open quantum system, Phys . Rev. A, 1998, 58(1): R50
|
| [16] |
I. Zapata, F. Sols, and A. J. Leggett, Josephson effect between trapped Bose–Einstein condensates, Phys. Rev. A, 1998, 57(1): R28
|
| [17] |
A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett., 1997, 79(25): 4950
|
| [18] |
S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping, Phys. Rev. A, 1999, 59(1): 620
|
| [19] |
S. Giovanazzi, A. Smerzi, and S. Fantoni, Josephson effects in dilute Bose–Einstein condensates, Phys. Rev. Lett., 2000, 84(20): 4521
|
| [20] |
A. Vardi and J. R. Anglin, Bose–Einstein condensates beyond mean field theory: Quantum backreaction as decoherence, Phys. Rev. Lett., 2001, 86(4): 568
|
| [21] |
M. Trujillo-Martinez, A. Posazhennikova, and J. Kroha, Nonequilibrium Josephson oscillations in Bose–Einstein condensates without dissipation, Phys. Rev. Lett., 2009, 103(10): 105302
|
| [22] |
M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Observation of qnterference between two Bose condensates, Science, 1997, 275(5300): 637
|
| [23] |
M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett., 2005, 95(1): 010402
|
| [24] |
S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose–Einstein condensate, Nature, 2007, 449(7162): 579
|
| [25] |
R. Gati and M. K. Oberthaler, A bosonic Josephson junction, J.Phys.B:At.Mol.Opt.Phys., 2007, 40(10): R61
|
| [26] |
M. Melé-Messeguer, B. Juliá-Díaz, M. Guilleumas, A. Polls, and A. Sanpera, Weakly linked binary mixtures of F=187 Rb Bose–Einstein condensates, New J. Phys., 2011, 13(3): 033012
|
| [27] |
M. Saba, T. A. Pasquini, C. Sanner, Y. Shin, W. Ketterle, and D. E. Pritchard, Light scattering to determine the relative phase of two Bose–Einstein condensates, Science, 2005, 307(5717): 1945
|
| [28] |
H. Zheng, Y. Hao, and Q. Gu, Dissipation effect in the double-well Bose–Einstein condensate, Eur. Phys . J. D, 2012, 66: 320
|
| [29] |
The lattice will be more perfect if it consists of more lattice sites. We choose k= 7 in order to show the lattice feature clearly in figures.
|
| [30] |
H. C. Jiang, Z. Y. Weng, and T. Xiang, Superfluid-Mottinsulator transition in a one-dimensional optical lattice with double-well potentials, Phys. Rev. B, 2007, 76(22): 224515
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag Berlin Heidelberg