Gold nanocages as multifunctional materials for nanomedicine
Xiaohu Xia, Younan Xia
Gold nanocages as multifunctional materials for nanomedicine
Featured by tunable localized surface plasmon resonance peaks in the near-infrared region and hollow interiors, Au nanocages represent a novel class of multifunctional nanomaterials that have gained considerable attention in recent years. This short review summarizes our recent work on the capabilities of Au nanocages in nanomedicine. We start with a brief description of the synthesis of Au nanocages and highlight our recent protocols for the scaled-up production of Au nanocages. We then use a number of examples to illustrate how Au nanocages can contribute to nanomedicine with respect to both diagnosis and therapy.
gold nanocage / nanomedicine / diagnosis / therapy
[1] |
K. Riehemann, S. W. Schneider, T. A. Luger, B. Godin, M. Ferrari, and H. Fuchs, Nanomedicine-challenge and perspectives, Angew. Chem. Int. Ed., 2009, 48(5): 872
CrossRef
ADS
Google scholar
|
[2] |
S. M. Moghimi, A. C. Hunter, and J. C. Murray, Nanomedicine: current status and future prospects, FASEB J., 2005, 19(3): 311
CrossRef
ADS
Google scholar
|
[3] |
N. L. Rosi and C. A. Mirkin, Nanostructures in biodiagnostics, Chem. Rev., 2005, 105(4): 1547
CrossRef
ADS
Google scholar
|
[4] |
E. Boisselier and D. Astruc, Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity, Chem. Soc. Rev., 2009, 38(6): 1759
CrossRef
ADS
Google scholar
|
[5] |
O. C. Farokhzad and R. Langer, Nanomedicine: Developing smarter therapeutic and diagnostic modalities, Adv. Drug Deliv. Rev., 2006, 58(14): 1456
CrossRef
ADS
Google scholar
|
[6] |
S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, Gold nanocages for biomedical applications, Adv. Mater., 2007, 19(20): 3177
CrossRef
ADS
Google scholar
|
[7] |
S. Lal, S. E. Clare, and N. J. Halas, Nanoshell-enabled photothermal cancer therapy: Impending clinical impact, Acc. Chem. Res., 2008, 41(12): 1842
CrossRef
ADS
Google scholar
|
[8] |
P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Acc. Chem. Res., 2008, 41(12): 1578
CrossRef
ADS
Google scholar
|
[9] |
C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging, Acc. Chem. Res., 2008, 41(12): 1721
CrossRef
ADS
Google scholar
|
[10] |
C. M. Cobley, J. Chen, E. C. Cho, L. V. Wang, and Y. Xia, Gold nanostructures: A class of multifunctional materials for biomedical applications, Chem. Soc. Rev., 2011, 40(1): 44
CrossRef
ADS
Google scholar
|
[11] |
K. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B, 2003, 107(3): 668
CrossRef
ADS
Google scholar
|
[12] |
B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. R. Siekkinen, and Y. Xia, Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis, J. Phys. Chem. B, 2006, 110(32): 15666
CrossRef
ADS
Google scholar
|
[13] |
R. Weissleder, A clearer vision for in vivo imaging, Nature Biotechnology, 2001, 19(4): 316
CrossRef
ADS
Google scholar
|
[14] |
M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, Gold nanostructures: Engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev., 2006, 35(11): 1084
CrossRef
ADS
Google scholar
|
[15] |
J. Rodríguez-Fernández, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, Seeded growth of submicron au colloids with quadrupole plasmon resonance modes, Langmuir, 2006, 22(16): 7007
CrossRef
ADS
Google scholar
|
[16] |
Y. Sun, B. T. Mayers, and Y. Xia, Template-engaged replacement reaction: A one-step approach to the largescale synthesis of metal nanostructures with hollow interiors, Nano Lett., 2002, 2(5): 481
CrossRef
ADS
Google scholar
|
[17] |
Y. Sun and Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 2002, 298(5601): 2176
CrossRef
ADS
Google scholar
|
[18] |
Y. Sun and Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium, J. Am. Chem. Soc., 2004, 126(12): 3892
CrossRef
ADS
Google scholar
|
[19] |
S. E. Skrabalak, L. Au, X. Li, and Y. Xia, Facile synthesis of Ag nanocubes and Au nanocages, Nat. Protoc., 2007, 2(9): 2182
CrossRef
ADS
Google scholar
|
[20] |
S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. Cobley, and Y. Xia, Gold nanocages: Synthesis, properties, and applications, Acc. Chem. Res., 2008, 41(12): 1587
CrossRef
ADS
Google scholar
|
[21] |
S. E. Skrabalak, B. J. Wiley, M. Kim, E. V. Formo, and Y. Xia, On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent, Nano Lett., 2008, 8(7): 2077
CrossRef
ADS
Google scholar
|
[22] |
X. Xia, J. Zeng, L. K. Oetjen, Q. Li, and Y. Xia, Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals, J. Am. Chem. Soc., 2012, 134(3): 1793
CrossRef
ADS
Google scholar
|
[23] |
B. Wiley, T. Herricks, Y. Sun, and Y. Xia, Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons, Nano Lett., 2004, 4(9): 1733
CrossRef
ADS
Google scholar
|
[24] |
A. R. Siekkinen, J. M. McLellan, J. Chen, and Y. Xia, Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide, Chem. Phys. Lett., 2006, 432(4-6): 491
CrossRef
ADS
Google scholar
|
[25] |
Q. Zhang, C. Cobley, L. Au, M. McKiernan, A. Schwartz, L. P. Wen, J. Chen, and Y. Xia, Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon, ACS Appl. Mater. Interfaces, 2009, 1(9): 2044
CrossRef
ADS
Google scholar
|
[26] |
Q. Zhang, W. Li, L. P. Wen, J. Chen, and Y. Xia, Facile synthesis of ag nanocubes of 30 to 70 nm in edge length with CF3 COOAg as a precursor, Chemistry, 2010, 16(33): 10234
CrossRef
ADS
Google scholar
|
[27] |
A. Mooradian, Photoluminescence of metals, Phys. Rev. Lett., 1969, 22(5): 185
CrossRef
ADS
Google scholar
|
[28] |
L. Au, Q. Zhang, C. M. Cobley, M. Gidding, A. G. Schwartz, J. Chen, and Y. Xia, Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry, ACS Nano, 2010, 4(1): 35
CrossRef
ADS
Google scholar
|
[29] |
L. Tong, C. M. Cobley, J. Chen, Y. Xia, and J. X. Cheng, Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity, Angew. Chem. Int. Ed., 2010, 49(20): 3485
CrossRef
ADS
Google scholar
|
[30] |
X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, Nanoparticles for photoacoustic imaging, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(4): 360
CrossRef
ADS
Google scholar
|
[31] |
K. H. Song, C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang, Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model, Nano Lett., 2009, 9(1): 183
CrossRef
ADS
Google scholar
|
[32] |
C. Kim, C. Favazza, and L. V. Wang, In Vivo photoacoustic tomography of chemicals: High-resolution functional and molecular optical imaging at new depths, Chem. Rev., 2010, 110(5): 2756
CrossRef
ADS
Google scholar
|
[33] |
X. Yang, S. Skrabalak, Z. Li, Y. Xia, and L. V. Wang, Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent, Nano Lett., 2007, 7(12): 3798
CrossRef
ADS
Google scholar
|
[34] |
C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, In Vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages, ACS Nano, 2010, 4(8): 4559
CrossRef
ADS
Google scholar
|
[35] |
L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. USA, 2003, 100(23): 13549
CrossRef
ADS
Google scholar
|
[36] |
X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci., 2008, 23(3): 217
CrossRef
ADS
Google scholar
|
[37] |
X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, Cancer cell imaging and photothermal therapy in the nearinfrared region by using gold nanorods, J. Am. Chem. Soc., 2006, 128(6): 2115
CrossRef
ADS
Google scholar
|
[38] |
W. Hasan, C. L. Stender, M. H. Lee, C. L. Nehl, J. Lee, and T. W. Odom, Tailoring the structure of nanopyramids for optimal heat generation, Nano Lett., 2009, 9(4): 1555
CrossRef
ADS
Google scholar
|
[39] |
J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells, Nano Lett., 2007, 7(5): 1318
CrossRef
ADS
Google scholar
|
[40] |
J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents, Nano Lett., 2005, 5(3): 473
CrossRef
ADS
Google scholar
|
[41] |
J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, Gold nanocages as photothermal transducers for cancer treatment, Small, 2010, 6(7): 811
CrossRef
ADS
Google scholar
|
[42] |
M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, Gold nanocages covered by smart polymers for controlled release with near-infrared light, Nat. Mater., 2009, 8(12): 935
CrossRef
ADS
Google scholar
|
[43] |
G. D. Moon, S. W. Choi, X. Cai, W. Li, E. C. Cho, U. Jeong, L. V. Wang, and Y. Xia, A New Theranostic System Based on Gold Nanocages and Phase-Change Materials with Unique Features for Photoacoustic Imaging and Controlled Release, J. Am. Chem. Soc., 2011, 133(13): 4762
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |