Gold nanocages as multifunctional materials for nanomedicine

Xiaohu Xia , Younan Xia

Front. Phys. ›› 2014, Vol. 9 ›› Issue (3) : 378 -384.

PDF (556KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (3) : 378 -384. DOI: 10.1007/s11467-013-0318-8
Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber)

Gold nanocages as multifunctional materials for nanomedicine

Author information +
History +
PDF (556KB)

Abstract

Featured by tunable localized surface plasmon resonance peaks in the near-infrared region and hollow interiors, Au nanocages represent a novel class of multifunctional nanomaterials that have gained considerable attention in recent years. This short review summarizes our recent work on the capabilities of Au nanocages in nanomedicine. We start with a brief description of the synthesis of Au nanocages and highlight our recent protocols for the scaled-up production of Au nanocages. We then use a number of examples to illustrate how Au nanocages can contribute to nanomedicine with respect to both diagnosis and therapy.

Graphical abstract

Keywords

gold nanocage / nanomedicine / diagnosis / therapy

Cite this article

Download citation ▾
Xiaohu Xia, Younan Xia. Gold nanocages as multifunctional materials for nanomedicine. Front. Phys., 2014, 9(3): 378-384 DOI:10.1007/s11467-013-0318-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. Riehemann, S. W. Schneider, T. A. Luger, B. Godin, M. Ferrari, and H. Fuchs, Nanomedicine-challenge and perspectives, Angew. Chem. Int. Ed., 2009, 48(5): 872

[2]

S. M. Moghimi, A. C. Hunter, and J. C. Murray, Nanomedicine: current status and future prospects, FASEB J., 2005, 19(3): 311

[3]

N. L. Rosi and C. A. Mirkin, Nanostructures in biodiagnostics, Chem. Rev., 2005, 105(4): 1547

[4]

E. Boisselier and D. Astruc, Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity, Chem. Soc. Rev., 2009, 38(6): 1759

[5]

O. C. Farokhzad and R. Langer, Nanomedicine: Developing smarter therapeutic and diagnostic modalities, Adv. Drug Deliv. Rev., 2006, 58(14): 1456

[6]

S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia, Gold nanocages for biomedical applications, Adv. Mater., 2007, 19(20): 3177

[7]

S. Lal, S. E. Clare, and N. J. Halas, Nanoshell-enabled photothermal cancer therapy: Impending clinical impact, Acc. Chem. Res., 2008, 41(12): 1842

[8]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Acc. Chem. Res., 2008, 41(12): 1578

[9]

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging, Acc. Chem. Res., 2008, 41(12): 1721

[10]

C. M. Cobley, J. Chen, E. C. Cho, L. V. Wang, and Y. Xia, Gold nanostructures: A class of multifunctional materials for biomedical applications, Chem. Soc. Rev., 2011, 40(1): 44

[11]

K. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B, 2003, 107(3): 668

[12]

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. R. Siekkinen, and Y. Xia, Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis, J. Phys. Chem. B, 2006, 110(32): 15666

[13]

R. Weissleder, A clearer vision for in vivo imaging, Nature Biotechnology, 2001, 19(4): 316

[14]

M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, Gold nanostructures: Engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev., 2006, 35(11): 1084

[15]

J. Rodríguez-Fernández, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, Seeded growth of submicron au colloids with quadrupole plasmon resonance modes, Langmuir, 2006, 22(16): 7007

[16]

Y. Sun, B. T. Mayers, and Y. Xia, Template-engaged replacement reaction: A one-step approach to the largescale synthesis of metal nanostructures with hollow interiors, Nano Lett., 2002, 2(5): 481

[17]

Y. Sun and Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 2002, 298(5601): 2176

[18]

Y. Sun and Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium, J. Am. Chem. Soc., 2004, 126(12): 3892

[19]

S. E. Skrabalak, L. Au, X. Li, and Y. Xia, Facile synthesis of Ag nanocubes and Au nanocages, Nat. Protoc., 2007, 2(9): 2182

[20]

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. Cobley, and Y. Xia, Gold nanocages: Synthesis, properties, and applications, Acc. Chem. Res., 2008, 41(12): 1587

[21]

S. E. Skrabalak, B. J. Wiley, M. Kim, E. V. Formo, and Y. Xia, On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent, Nano Lett., 2008, 8(7): 2077

[22]

X. Xia, J. Zeng, L. K. Oetjen, Q. Li, and Y. Xia, Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals, J. Am. Chem. Soc., 2012, 134(3): 1793

[23]

B. Wiley, T. Herricks, Y. Sun, and Y. Xia, Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons, Nano Lett., 2004, 4(9): 1733

[24]

A. R. Siekkinen, J. M. McLellan, J. Chen, and Y. Xia, Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide, Chem. Phys. Lett., 2006, 432(4-6): 491

[25]

Q. Zhang, C. Cobley, L. Au, M. McKiernan, A. Schwartz, L. P. Wen, J. Chen, and Y. Xia, Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon, ACS Appl. Mater. Interfaces, 2009, 1(9): 2044

[26]

Q. Zhang, W. Li, L. P. Wen, J. Chen, and Y. Xia, Facile synthesis of ag nanocubes of 30 to 70 nm in edge length with CF3 COOAg as a precursor, Chemistry, 2010, 16(33): 10234

[27]

A. Mooradian, Photoluminescence of metals, Phys. Rev. Lett., 1969, 22(5): 185

[28]

L. Au, Q. Zhang, C. M. Cobley, M. Gidding, A. G. Schwartz, J. Chen, and Y. Xia, Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry, ACS Nano, 2010, 4(1): 35

[29]

L. Tong, C. M. Cobley, J. Chen, Y. Xia, and J. X. Cheng, Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity, Angew. Chem. Int. Ed., 2010, 49(20): 3485

[30]

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, Nanoparticles for photoacoustic imaging, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(4): 360

[31]

K. H. Song, C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang, Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model, Nano Lett., 2009, 9(1): 183

[32]

C. Kim, C. Favazza, and L. V. Wang, In Vivo photoacoustic tomography of chemicals: High-resolution functional and molecular optical imaging at new depths, Chem. Rev., 2010, 110(5): 2756

[33]

X. Yang, S. Skrabalak, Z. Li, Y. Xia, and L. V. Wang, Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent, Nano Lett., 2007, 7(12): 3798

[34]

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, In Vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages, ACS Nano, 2010, 4(8): 4559

[35]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. USA, 2003, 100(23): 13549

[36]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci., 2008, 23(3): 217

[37]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, Cancer cell imaging and photothermal therapy in the nearinfrared region by using gold nanorods, J. Am. Chem. Soc., 2006, 128(6): 2115

[38]

W. Hasan, C. L. Stender, M. H. Lee, C. L. Nehl, J. Lee, and T. W. Odom, Tailoring the structure of nanopyramids for optimal heat generation, Nano Lett., 2009, 9(4): 1555

[39]

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells, Nano Lett., 2007, 7(5): 1318

[40]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents, Nano Lett., 2005, 5(3): 473

[41]

J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, Gold nanocages as photothermal transducers for cancer treatment, Small, 2010, 6(7): 811

[42]

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, Gold nanocages covered by smart polymers for controlled release with near-infrared light, Nat. Mater., 2009, 8(12): 935

[43]

G. D. Moon, S. W. Choi, X. Cai, W. Li, E. C. Cho, U. Jeong, L. V. Wang, and Y. Xia, A New Theranostic System Based on Gold Nanocages and Phase-Change Materials with Unique Features for Photoacoustic Imaging and Controlled Release, J. Am. Chem. Soc., 2011, 133(13): 4762

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (556KB)

1555

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/