Applications of carbon nanotubes in high performance lithium ion batteries
Yang Wu, Jiaping Wang, Kaili Jiang, Shoushan Fan
Applications of carbon nanotubes in high performance lithium ion batteries
The development of lithium ion batteries (LIBs) relies on the improvement in the performance of electrode materials with higher capacity, higher rate capability, and longer cycle life. In this review article, the recent advances in carbon nanotube (CNT) anodes, CNT-based composite electrodes, and CNT current collectors for high performance LIBs are concerned. CNT has received considerable attentions as a candidate material for the LIB applications. In addition to a possible choice for anode, CNT has been recognized as a solution in improving the performance of the state-of-the-art electrode materials. The CNT-based composite electrodes can be fabricated by mechanical or chemical approaches. Owing to the large aspect ratio and the high electrical conductivity, CNTs at very low loading can lead to an efficient conductive network. The excellent mechanical strength suggests the great potential in forming a structure scaffold to accommodate nano-sized electrode materials. Accordingly, the incorporation of CNTs will enhance the conductivity of the composite electrodes, mitigate the agglomeration problem, decrease the dependence on inactive binders, and improve the electrochemical properties of both anode and cathode materials remarkably. Freestanding CNT network can be used as lightweight current collectors to increase the overall energy density of LIBs. Finally, research perspectives for exploiting CNTs in high-performance LIBs are discussed.
lithium ion battery / carbon nanotube / composite / conductive additive / structural scaffold
[1] |
M. Armand and J. M. Tarascon, Building better batteries, Nature, 2008, 451(7179): 652
CrossRef
ADS
Google scholar
|
[2] |
B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 2011, 334(6058): 928
CrossRef
ADS
Google scholar
|
[3] |
J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414(6861): 359
CrossRef
ADS
Google scholar
|
[4] |
M. S. Whittingham, Electrical energy storage and intercalation chemistry, Science, 1976, 192(4244): 1126
CrossRef
ADS
Google scholar
|
[5] |
M. S. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 2004, 104(10): 4271
CrossRef
ADS
Google scholar
|
[6] |
K. Ozawa, Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system, Solid State Ion., 1994, 69(3-4): 212
CrossRef
ADS
Google scholar
|
[7] |
M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 1998, 10(10): 725
CrossRef
ADS
Google scholar
|
[8] |
H. Dai, Carbon nanotubes: opportunities and challenges, Surf. Sci., 2002, 500(1-3): 218
CrossRef
ADS
Google scholar
|
[9] |
T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Electrical conductivity of individual carbon nanotubes, Nature, 1996, 382(6586): 54
CrossRef
ADS
Google scholar
|
[10] |
M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 2000, 287(5453): 637
CrossRef
ADS
Google scholar
|
[11] |
M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 1996, 381(6584): 678
CrossRef
ADS
Google scholar
|
[12] |
R. Fong, U. Sacken, and J. R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, J. Electrochem. Soc., 1990, 137(7): 2009
CrossRef
ADS
Google scholar
|
[13] |
Z. X. Shu, R. S. McMillan, and J. J. Murray, Electrochemical intercalation of lithium into graphite, J. Electrochem. Soc., 1993, 140(4): 922
CrossRef
ADS
Google scholar
|
[14] |
M. S. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite, Adv. Phys., 1981, 30(2): 139
CrossRef
ADS
Google scholar
|
[15] |
N. A. Kaskhedikar and J. Maier, Lithium storage in carbon nanostructures, Adv. Mater., 2009, 21(25-26): 2664
CrossRef
ADS
Google scholar
|
[16] |
M. Armand and P. Touzain, Graphite intercalation compounds as cathode materials, Mater. Sci. Eng., 1977, 31(0): 319
CrossRef
ADS
Google scholar
|
[17] |
L. Pauling, The structure and properties of graphite and boron nitride, Proc. Natl. Acad. Sci. USA, 1966, 56(6): 1646
CrossRef
ADS
Google scholar
|
[18] |
J. R. Dahn, Phase diagram of LixC6, Phys. Rev. B, 1991, 44(17): 9170
CrossRef
ADS
Google scholar
|
[19] |
N. Kambe, M. S. Dresselhaus, G. Dresselhaus, S. Basu, A. R. McGhie, and J. E. Fischer, Intercalate ordering in first stage graphite-lithium, Mater. Sci. Eng., 1979, 40(1): 1
CrossRef
ADS
Google scholar
|
[20] |
T. Ohzuku, Y. Iwakoshi, and K. Sawai, Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell, J. Electrochem. Soc., 1993, 140(9): 2490
CrossRef
ADS
Google scholar
|
[21] |
K. Persson, Y. Hinuma, Y. S. Meng, A. Van der Ven, and G. Ceder, Thermodynamic and kinetic properties of the Ligraphite system from first-principles calculations, Phys. Rev. B, 2010, 82(12): 125416
CrossRef
ADS
Google scholar
|
[22] |
R. C. Boehm and A. Banerjee, Theoretical study of lithium intercalated graphite, J. Chem. Phys., 1992, 96(2): 1150
CrossRef
ADS
Google scholar
|
[23] |
V. A. Nalimova, D. Guerard, M. Lelaurain, and O. V. Fateev, X-ray investigation of highly saturated Ligraphite intercalation compound, Carbon, 1995, 33(2): 177
CrossRef
ADS
Google scholar
|
[24] |
V. V. Avdeev, V. A. Nalimova, and K. N. Semenenko, The alkali metals in graphite matrixes-new aspects of metallic state chemistry, High Press. Res., 1990, 6(1): 11
CrossRef
ADS
Google scholar
|
[25] |
Y. Nagata, Y. Ohnishi, H. Hatori, M. Shiraishi, and T. Kajiyama, Carbonization of crystalline polyimide particles, Kobunshi Ronbunshu, 1996, 53(5): 302
CrossRef
ADS
Google scholar
|
[26] |
A. Yasuda, N. Kawase, F. Banhart, W. Mizutani, T. Shimizu, and H. Tokumoto, Graphitization mechanism during the carbon-nanotube formation based on the in-situ HRTEM observation, J. Phys. Chem. B, 2002, 106(8): 1849
CrossRef
ADS
Google scholar
|
[27] |
R. E. Franklin, Crystallite growth in graphitizing and nongraphitizing carbons, Proc. R. Soc. Lond. A: Math. Phys. Sci., 1951, 209(1097): 196
CrossRef
ADS
Google scholar
|
[28] |
K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi, A. Mabuchi, and H. Fujimoto, The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries, J. Electrochem. Soc., 1995, 142(3): 716
CrossRef
ADS
Google scholar
|
[29] |
N. Takami, A. Satoh, M. Hara, and T. Ohsaki, Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries, J. Electrochem. Soc., 1995, 142(2): 371
CrossRef
ADS
Google scholar
|
[30] |
A. Satoh, N. Takami, and T. Ohsaki, Electrochemical intercalation of lithium into graphitized carbons, Solid State Ion., 1995, 80(3-4): 291
CrossRef
ADS
Google scholar
|
[31] |
A. Mabuchi, K. Tokumitsu, H. Fujimoto, and T. Kasuh, Charge-discharge characteristics of the mesocarbon miocrobeads heat-treated at different temperatures, J. Electrochem. Soc., 1995, 142(4): 1041
CrossRef
ADS
Google scholar
|
[32] |
J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science, 1995, 270(5236): 590
CrossRef
ADS
Google scholar
|
[33] |
T. D. Tran, J. H. Feikert, X. Song, and K. Kinoshita, Commercial carbonaceous materials as lithium intercalation anodes, J. Electrochem. Soc., 1995, 142(10): 3297
CrossRef
ADS
Google scholar
|
[34] |
C. Kim, T. Fujino, K. Miyashita, T. Hayashi, M. Endo, and M. S. Dresselhaus, Microstructure and electrochemical properties of boron-doped mesocarbon microbeads, J. Electrochem. Soc., 2000, 147(4): 1257
CrossRef
ADS
Google scholar
|
[35] |
M. K. Song and K. T. No, Substitution effect of carbon with group 13, 14, and 15 elements on lithium intercalation in graphite, J. Electrochem. Soc., 2004, 151(10): A1696
CrossRef
ADS
Google scholar
|
[36] |
T. Zheng, Y. Liu, E. W. Fuller, S. Tseng, U. Sacken, and J. R. Dahn, Lithium insertion in high capacity carbonaceous materials, J. Electrochem. Soc., 1995, 142(8): 2581
CrossRef
ADS
Google scholar
|
[37] |
N. Takami, A. Satoh, T. Ohsaki, and M. Kanda, Lithium insertion and extraction for high-capacity disordered carbons with large hysteresis, Electrochim. Acta, 1997, 42(16): 2537
CrossRef
ADS
Google scholar
|
[38] |
S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354(6348): 56
CrossRef
ADS
Google scholar
|
[39] |
V. Meunier, J. Kephart, C. Roland, and J. Bernholc, Ab initio investigations of lithium diffusion in carbon nanotube systems, Phys. Rev. Lett., 2002, 88(7): 075506
CrossRef
ADS
Google scholar
|
[40] |
Z. Zhou, X. P. Gao, J. Yan, D. Y. Song, and M. Morinaga, A first-principles study of lithium absorption in boronor nitrogen-doped single-walled carbon nanotubes, Carbon, 2004, 42(12-13): 2677
CrossRef
ADS
Google scholar
|
[41] |
C. Garau, A. Frontera, D. Quinonero, A. Costa, P. Ballester, and P. M. Deya, Lithium diffusion in single-walled carbon nanotubes: A theoretical study, Chem. Phys. Lett., 2003, 374(5-6): 548
CrossRef
ADS
Google scholar
|
[42] |
T. Kar, J. Pattanayak, and S. Scheiner, Insertion of lithium ions into carbon nanotubes: An ab initio study, J. Phys. Chem. A, 2001, 105(45): 10397
CrossRef
ADS
Google scholar
|
[43] |
G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairac, and B. Simon, Electrochemical intercalation of lithium into multiwall carbon nanotubes, Chem. Phys. Lett., 1999, 312(1): 14
CrossRef
ADS
Google scholar
|
[44] |
A. S. Claye, J. E. Fischer, C. B. Huffman, A. G. Rinzler, and R. E. Smalley, Solid-state electrochemistry of the Li single wall carbon nanotube system, J. Electrochem. Soc., 2000, 147(8): 2845
CrossRef
ADS
Google scholar
|
[45] |
B. Gao, C. Bower, J. D. Lorentzen, L. Fleming, A. Kleinhammes, X. P. Tang, L. E. McNeil, Y. Wu, and O. Zhou, Enhanced saturation lithium composition in ball-milled singlewalled carbon nanotubes, Chem. Phys. Lett., 2000, 327(1-2): 69
CrossRef
ADS
Google scholar
|
[46] |
G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production, Nature, 1998, 393(6683): 346
CrossRef
ADS
Google scholar
|
[47] |
E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, and F. Beguin, Electrochemical storage of lithium in multiwalled carbon nanotubes, Carbon, 1999, 37(1): 61
CrossRef
ADS
Google scholar
|
[48] |
E. Frackowiak and F. Beguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon, 2002, 40(10): 1775
CrossRef
ADS
Google scholar
|
[49] |
B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, and O. Zhou, Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chem. Phys. Lett., 1999, 307(3-4): 153
CrossRef
ADS
Google scholar
|
[50] |
G. X. Wang, J. H. Ahn, J. Yao, M. Lindsay, H. K. Liu, and S. X. Dou, Preparation and characterization of carbon nanotubes for energy storage, J. Power Sources, 2003, 119-121: 16
CrossRef
ADS
Google scholar
|
[51] |
C. Masarapu, V. Subramanian, H. W. Zhu, and B. Q. Wei, Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries, Adv. Funct. Mater., 2009, 19(7): 1008
CrossRef
ADS
Google scholar
|
[52] |
S. B. Yang, H. H. Song, X. H. Chen, A. V. Okotrub, and L. G. Bulusheva, Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries, Electrochim. Acta, 2007, 52(16): 5286
CrossRef
ADS
Google scholar
|
[53] |
K. L. Jiang, Q. Q. Li, and S. S. Fan, Nanotechnology: Spinning continuous carbon nanotube yarns, Nature, 2002, 419(6909): 801
CrossRef
ADS
Google scholar
|
[54] |
K. L. Jiang, J. P. Wang, Q. Q. Li, L. A. Liu, C. H. Liu, and S. S. Fan, Superaligned carbon nanotube arrays, films, and yarns: A road to applications, Adv. Mater., 2011, 23(9): 1154
CrossRef
ADS
Google scholar
|
[55] |
H. Zhang, G. P. Cao, and Y. S. Yang, Carbon nanotube arrays and their composites for electrochemicalcapacitors and lithium-ion batteries, Energy Environ. Sci., 2009, 2(9): 932
CrossRef
ADS
Google scholar
|
[56] |
S. H. Ng, J. Wang, Z. P. Guo, G. X. Wang, and H. K. Liu, Single wall carbon nanotube paper as anode for lithium-ion battery, Electrochim. Acta, 2005, 51(1): 23
CrossRef
ADS
Google scholar
|
[57] |
S. Y. Chew, S. H. Ng, J. Z. Wang, P. Novak, F. Krumeich, S. L. Chou, J. Chen, and H. K. Liu, Flexible free-standing carbon nanotube films for model lithium-ion batteries, Carbon, 2009, 47(13): 2976
CrossRef
ADS
Google scholar
|
[58] |
B. J. Landi, R. A. Dileo, C. M. Schauerman, C. D. Cress, M. J. Ganter, and R. P. Raffaelle, Multi-walled carbon nanotube paper anodes for lithium ion batteries, J. Nanosci. Nanotechnol., 2009, 9(6): 3406
CrossRef
ADS
Google scholar
|
[59] |
J. Chen, A. I. Minett, Y. Liu, C. Lynam, P. Sherrell, C. Wang, and G. G. Wallace, Direct growth of flexible carbon nanotube electrodes, Adv. Mater., 2008, 20(3): 566
CrossRef
ADS
Google scholar
|
[60] |
G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, and W. Z. Li, Structure and lithium insertion properties of carbon nanotubes, J. Electrochem. Soc., 1999, 146(5): 1696
CrossRef
ADS
Google scholar
|
[61] |
J. Zhao, A. Buldum, J. Han, and J. Ping Lu, First-principles study of li-intercalated carbon nanotube ropes, Phys. Rev Lett., 2000, 85(8): 1706
CrossRef
ADS
Google scholar
|
[62] |
J. Li, C. Wu and L. Guan, Lithium insertion/extraction properties of nanocarbon materials, J. Phys. Chem. C, 2009, 113(42): 18431
CrossRef
ADS
Google scholar
|
[63] |
X. X.Wang, J. N.Wang, H. Chang, and Y. F. Zhang, Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries, Adv. Funct. Mater., 2007, 17(17): 3613
CrossRef
ADS
Google scholar
|
[64] |
D. T. Welna, L. T. Qu, B. E. Taylor, L. M. Dai, and M. F. Durstock, Vertically aligned carbon nanotube electrodes for lithium-ion batteries, J. Power Sources, 2011, 196(3): 1455
CrossRef
ADS
Google scholar
|
[65] |
I. Lahiri, S. W. Oh, J. Y. Hwang, S. Cho, Y. K. Sun, R. Banerjee, and W. Choi, High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper, ACS Nano, 2010, 4(6): 3440
CrossRef
ADS
Google scholar
|
[66] |
I. Mukhopadhyay, N. Hoshino, S. Kawasaki, F. Okino, W. K. Hsu, and H. Touhara, Electrochemical Li insertion in B-doped multiwall carbon nanotubes, J. Electrochem. Soc., 2002, 149(1): A39
CrossRef
ADS
Google scholar
|
[67] |
L. G. Bulusheva, A. V. Okotrub, A. G. Kurenya, H. K. Zhang, H. J. Zhang, X. H. Chen, and H. H. Song, Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries, Carbon, 2011, 49(12): 4013
CrossRef
ADS
Google scholar
|
[68] |
X. L. Li, F. Y. Kang, X. D. Bai, and W. Shen, A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries, Electrochem. Commun., 2007, 9(4): 663
CrossRef
ADS
Google scholar
|
[69] |
B. Jin, E. M. Jin, K. H. Park, and H. B. Gu, Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery, Electrochem. Commun., 2008, 10(10): 1537
CrossRef
ADS
Google scholar
|
[70] |
Y. J. Liu, X. H. Li, H. J. Guo, Z. X. Wang, W. J. Peng, Y. Yang, and R. F. Liang, Effect of carbon nanotube on the electrochemical performance of C-LiFePO4/graphite battery, J. Power Sources, 2008, 184(2): 522
CrossRef
ADS
Google scholar
|
[71] |
Y. Feng, The preparation and electrochemical performances of LiFePO4-multiwalled nanotubes composite cathode materials for lithium ion batteries, Mater. Chem. Phys., 2010, 121(1-2): 302
CrossRef
ADS
Google scholar
|
[72] |
T. Muraliganth, A. V. Murugan, and A. Manthiram, Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries, J. Mater. Chem., 2008, 18(46): 5661
CrossRef
ADS
Google scholar
|
[73] |
G. P. Wang, Q. T. Zhang, Z. L. Yu, and M. Z. Qu, The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes, Solid State Ion., 2008, 179(7-8): 263
|
[74] |
K. Sheem, Y. H. Lee, and H. S. Lim, High-density positive electrodes containing carbon nanotubes for use in Li-ion cells, J. Power Sources, 2006, 158(2): 1425
CrossRef
ADS
Google scholar
|
[75] |
J. H. Park, S. Y. Lee, J. H. Kim, S. Ahn, J. S. Park, and Y. U. Jeong, Effect of conducting additives on the properties of composite cathodes for lithium-ion batteries, J. Solid State Electrochem., 2010, 14(4): 593
CrossRef
ADS
Google scholar
|
[76] |
J. H. Lee, G. S. Kim, Y. M. Choi, W. Il Park, J. A. Rogers, and U. Paik, Comparison of multiwalled carbon nanotubes and carbon black as percolative paths in aqueous-based natural graphite negative electrodes with high-rate capability for lithium-ion batteries, J. Power Sources, 2008, 184(1): 308
CrossRef
ADS
Google scholar
|
[77] |
X. L. Li, F. Y. Kang, and W. C. Shen, Multiwalled carbon nanotubes as a conducting additive in a LiNi0.7Co0.3O2cathode for rechargeable lithium batteries, Carbon, 2006, 44(7): 1334
CrossRef
ADS
Google scholar
|
[78] |
X. L. Li, F. Y. Kang, and W. C. Shen, A comparative investigation on multiwalled carbon nanotubes and carbon black as conducting additive in LiNi0.7Co0.3O2, Electrochem. Solid-State Lett., 2006, 9(3): A126
CrossRef
ADS
Google scholar
|
[79] |
A. Varzi, C. Taubert, M. Wohlfahrt-Mehrens, M. Kreis, and W. Schutz, Study of multi-walled carbon nanotubes for lithium-ion battery electrodes, J. Power Sources, 2011, 196(6): 3303
CrossRef
ADS
Google scholar
|
[80] |
J. Y. Eom, J. W. Park, H. S. Kwon, and S. Rajendran, Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling, J. Electrochem. Soc., 2006, 153(9): A1678
CrossRef
ADS
Google scholar
|
[81] |
C. Sotowa, G. Origi, M. Takeuchi, Y. Nishimura, K. Takeuchi, I. Y. Jang, Y. J. Kim, T. Hayashi, Y. A. Kim, M. Endo, and M. S. Dresselhaus, The reinforcing effect of combined carbon nanotubes and acetylene blacks on the positive electrode of lithium-ion batteries, ChemSusChem, 2008, 1(11): 911
CrossRef
ADS
Google scholar
|
[82] |
X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, Spinning and processing continuous yarns from 4-inch wafer scale superaligned carbon nanotube arrays, Adv. Mater., 2006, 18(12): 1505
CrossRef
ADS
Google scholar
|
[83] |
K. Liu, Y. H. Sun, L. Chen, C. Feng, X. F. Feng, K. L. Jiang, Y. G. Zhao, and S. S. Fan, Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties, Nano Lett., 2008, 8(2): 700
CrossRef
ADS
Google scholar
|
[84] |
K. Wang, Y. Wu, S. Luo, X. F. He, J. P. Wang, K. L. Jiang, and S. S. Fan, J. Power Sources, 2012 (submitted)
|
[85] |
S. Luo, K. Wang, J. Wang, K. Jiang, Q. Li, and S. Fan, Binder-free LiCoO2 /carbon nanotube cathodes for high-performance lithium ion batteries, Adv. Mater., 2012, 24(17): 2294
CrossRef
ADS
Google scholar
|
[86] |
M. D. Lima, S. Fang, X. Lepro, C. Lewis, R. Ovalle-Robles, J. Carretero-Gonzalez, E. Castillo-Martinez, M. E. Kozlov, J. Oh, N. Rawat, C. S. Haines, M. H. Haque, V. Aare, S. Stoughton, A. A. Zakhidov, and R. H. Baughman, Biscrolling nanotube sheets and functional guests into yarns, Science, 2011, 331(6013): 51
CrossRef
ADS
Google scholar
|
[87] |
Z. Chen, D. Q. Zhang, X. L. Wang, X. L. Jia, F. Wei, H. X. Li, and Y. F. Lu, High-performance energy-storage architectures from carbon nanotubes and nanocrystal building blocks, Adv. Mater., 2012, 24(15): 2030
CrossRef
ADS
Google scholar
|
[88] |
O. Toprakci, H. A. K. Toprakci, L. W. Ji, G. J. Xu, Z. Lin, and X. W. Zhang, Carbon nanotube-loaded electrospun LiFePO4 /carbon composite nanofibers As stable and binder-free cathodes for rechargeable lithium-ion batteries, ACS Appl. Mater. Interfaces, 2012, 4(3): 1273
CrossRef
ADS
Google scholar
|
[89] |
P. G. Bruce, B. Scrosati, and J. M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed., 2008, 47(16): 2930
CrossRef
ADS
Google scholar
|
[90] |
C. M. Hayner, X. Zhao, and H. H. Kung, Materials for rechargeable lithium-ion batteries, Annu. Rev. Chem. Biomol. Eng., 2012, 3: 445
CrossRef
ADS
Google scholar
|
[91] |
S. -D. Seo, G. -H. Lee, A. -H. Lim, K. -M. Min, J. -C. Kim, H. -W. Shim, K. -S. Park, and D. -W. Kim, Direct assembly of tin-MWCNT 3D-networked anode for rechargeable lithium ion batteries, RSC Advances, 2012, 2(8): 3315
CrossRef
ADS
Google scholar
|
[92] |
W. X. Chen, J. Y. Lee, and Z. Liu, Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites, Electrochem. Commun., 2002, 4(3): 260
CrossRef
ADS
Google scholar
|
[93] |
M. S. Park, S. A. Needham, G. X. Wang, Y. M. Kang, J. S. Park, S. X. Dou, and H. K. Liu, Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries, Chem. Mater., 2007, 19(10): 2406
CrossRef
ADS
Google scholar
|
[94] |
O. Crosnier, T. Brousse, X. Devaux, P. Fragnaud, and D. M. Schleich, New anode systems for lithium ion cells, J. Power Sources, 2001, 94(2): 169
CrossRef
ADS
Google scholar
|
[95] |
J. O. Besenhard, J. Yang, and M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources, 1997, 68(1): 87
CrossRef
ADS
Google scholar
|
[96] |
T. P. Kumar, R. Ramesh, Y. Y. Lin, and G. T. K. Fey, Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries, Electrochem. Commun., 2004, 6(6): 520
CrossRef
ADS
Google scholar
|
[97] |
Y. Wang and J. Y. Lee, One-step, confined growth of bimetallic tin–antimony nanorods in carbon nanotubes grown in situ for reversible Li+ ion storage, Angew. Chem. Int. Ed., 2006, 45(42): 7039
CrossRef
ADS
Google scholar
|
[98] |
L. Huang, J. S. Cai, Y. He, F. S. Ke, and S. G. Sun, Structure and electrochemical performance of nanostructured Sn–Co alloy/carbon nanotube composites as anodes for lithium ion batteries, Electrochem. Commun., 2009, 11(5): 950
CrossRef
ADS
Google scholar
|
[99] |
K. D. Kepler, J. T. Vaughey, and M. M. Thackeray, LixCu6Sn5(0<x<13): An intermetallic insertion electrode for rechargeable lithium batteries, Electrochem. Solid-State Lett., 1999, 2(7): 307
CrossRef
ADS
Google scholar
|
[100] |
C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes, ACS Nano, 2010, 4(3): 1443
CrossRef
ADS
Google scholar
|
[101] |
C. Martin, O. Crosnier, R. Retoux, D. Belanger, D. M. Schleich, and T. Brousse, Chemical coupling of carbon nanotubes and silicon nanoparticles for improved negative electrode performance in lithium-ion batteries, Adv. Funct. Mater., 2011, 21(18): 3524
CrossRef
ADS
Google scholar
|
[102] |
G. Chen, Z. Y. Wang, and D. G. Xia, One-Pot Synthesis of Carbon Nanotube@SnO2–Au Coaxial Nanocable for Lithium-Ion Batteries with High Rate Capability, Chem. Mater., 2008, 20(22): 6951
CrossRef
ADS
Google scholar
|
[103] |
Z. H. Wen, Q. Wang, Q. Zhang, and J. H. Li, In Situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries, Adv. Funct. Mater., 2007, 17(15): 2772
CrossRef
ADS
Google scholar
|
[104] |
L. Noerochim, J. Z. Wang, S. L. Chou, H. J. Li, and H. K. Liu, SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries, Electrochim. Acta, 2010, 56(1): 314
CrossRef
ADS
Google scholar
|
[105] |
H. X. Zhang, C. Feng, Y. C. Zhai, K. L. Jiang, Q. Q. Li, and S. S. Fan, Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries, Adv. Mater., 2009, 21(22): 2299
CrossRef
ADS
Google scholar
|
[106] |
J. Xie and V. K. Varadan, Synthesis and characterization of high surface area tin oxide/functionalized carbon nanotubes composite as anode materials, Mater. Chem. Phys., 2005, 91(2-3): 274
CrossRef
ADS
Google scholar
|
[107] |
G. M. An, N. Na, X. R. Zhang, Z. J. Miao, S. D. Miao, K. L. Ding, and Z. M. Liu, SnO2 /carbon nanotube nanocomposites synthesized in supercritical fluids: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery, Nanotechnology, 2007, 18(43): 435707
CrossRef
ADS
Google scholar
|
[108] |
Y. B. Fu, R. B. Ma, Y. Shu, Z. Cao, and X. H. Ma, Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications, Mater. Lett., 2009, 63(22): 1946
CrossRef
ADS
Google scholar
|
[109] |
G. D. Du, C. Zhong, P. Zhang, Z. P. Guo, Z. X. Chen, and H. K. Liu, Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries, Electrochim. Acta, 2010, 55(7): 2582
CrossRef
ADS
Google scholar
|
[110] |
C. H. Xu, J. Sun, and L. Gao, Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnO2 nanoparticles and their high performance in lithium-ion batteries, J. Phys. Chem. C, 2009, 113(47): 20509
CrossRef
ADS
Google scholar
|
[111] |
Z. Y. Wang, G. Chen, and D. G. Xia, Coating of multiwalled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery, J. Power Sources, 2008, 184(2): 432
CrossRef
ADS
Google scholar
|
[112] |
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, Nano-sized transition-metal oxides as negativeelectrode materials for lithium-ion batteries, Nature, 2000, 407(6803): 496
CrossRef
ADS
Google scholar
|
[113] |
J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions, Adv. Mater., 2010, 22(35): E170
CrossRef
ADS
Google scholar
|
[114] |
C. M. Ban, Z. C. Wu, D. T. Gillaspie, L. Chen, Y. F. Yan, J. L. Blackburn, and A. C. Dillon, Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode, Adv. Mater., 2010, 22(20): E145
CrossRef
ADS
Google scholar
|
[115] |
A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, Coaxial MnO2 /carbon nanotube array electrodes for high-performance lithium batteries, Nano Lett., 2009, 9(3): 1002
CrossRef
ADS
Google scholar
|
[116] |
F. Teng, S. Santhanagopalan, and D. D. Meng, Microstructure control of MnO2/CNT hybrids under in-situ hydrothermal conditions, Solid State Sci., 2010, 12(9): 1677
CrossRef
ADS
Google scholar
|
[117] |
Z. Wang, D. Luan, S. Madhavi, Y. Hu, and X. W. Lou, Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability, Energy Environ. Sci., 2012, 5(1): 5252
CrossRef
ADS
Google scholar
|
[118] |
Y. He, L. Huang, J. S. Cai, X. M. Zheng, and S. G. Sun, Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries, Electrochim. Acta, 2010, 55(3): 1140
CrossRef
ADS
Google scholar
|
[119] |
H. Xia, M. O. Lai, and L. Lu, Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries, J. Mater. Chem., 2010, 20(33): 6896
CrossRef
ADS
Google scholar
|
[120] |
G. X. Wang, X. P. Shen, J. N. Yao, D. Wexler, and J. Ahn, Hydrothermal synthesis of carbon nanotube/cobalt oxide core-shell one-dimensional nanocomposite and application as an anode material for lithium-ion batteries, Electrochem. Commun., 2009, 11(3): 546
CrossRef
ADS
Google scholar
|
[121] |
A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia, and P. G. Bruce, Lithium-ion intercalation into TiO2-B nanowires, Adv. Mater., 2005, 17(7): 862
CrossRef
ADS
Google scholar
|
[122] |
P. Liu, S. H. Lee, C. e. Tracy, Y. Yan, and J. Turner, Preparation and lithium insertion properties of mesoporous vanadium oxide, Adv. Mater., 2002, 14(1): 27
CrossRef
ADS
Google scholar
|
[123] |
C. M. Julien, Lithium intercalated compounds, Mater. Sci. Eng. Rep., 2003, 40(2): 47
CrossRef
ADS
Google scholar
|
[124] |
Y. S. Hu, L. Kienle, Y. G. Guo, and J. Maier, High lithium electroactivity of nanometer-sized rutile TiO2, Adv. Mater., 2006, 18(11): 1421
CrossRef
ADS
Google scholar
|
[125] |
Z. X. Yang, G. D. Du, Z. P. Guo, X. B. Yu, Z. X. Chen, T. L. Guo, and H. K. Liu, TiO2(B)@carbon composite nanowires as anode for lithium ion batteries with enhanced reversible capacity and cyclic performance, J. Mater. Chem., 2011, 21(24): 8591
CrossRef
ADS
Google scholar
|
[126] |
L. Shen, C. Yuan, H. Luo, X. Zhang, K. Xu, and F. Zhang, In situ growth of Li4Ti5O12 on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries, J. Mater. Chem., 2011, 21(3): 761
CrossRef
ADS
Google scholar
|
[127] |
J. J. Huang, and Z. Y. Jiang, The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery, Electrochim. Acta, 2008, 53(26): 7756
CrossRef
ADS
Google scholar
|
[128] |
F. F. Cao, Y. G. Guo, S. F. Zheng, X. L. Wu, L. Y. Jiang, R. R. Bi, L. J. Wan, and J. Maier, Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morpholog-ical solution to the lithium storage problem, Chem. Mater., 2010, 22(5): 1908
CrossRef
ADS
Google scholar
|
[129] |
D. H. Lee, D. W. Kim, and J. G. Park, Enhanced rate capabilities of nanobrookite with electronically conducting MWCNT networks, Cryst. Growth Des., 2008, 8(12): 4506
CrossRef
ADS
Google scholar
|
[130] |
J. S. Sakamoto and B. Dunn, Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries, J. Electrochem. Soc., 2002, 149(1): A26
CrossRef
ADS
Google scholar
|
[131] |
X. Jia, Z. Chen, A. Suwarnasarn, L. Rice, X.Wang, H. Sohn, Q. Zhang, B. M. Wu, F. Wei, and Y. Lu, High-performance flexible lithium-ion electrodes based on robust network architecture, Energy Environ. Sci., 2012, 5(5): 6845
CrossRef
ADS
Google scholar
|
[132] |
X. M. Liu, Z. D. Huang, S. Oh, P. C. Ma, P. C. H. Chan, G. K. Vedam, K. Kang, and J. K. Kim, Sol-gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries, J. Power Sources, 2010, 195(13): 4290
CrossRef
ADS
Google scholar
|
[133] |
J. Xu, G. Chen, and X. Li, Electrochemical performance of LiFePO4 cathode material coated with multi-wall carbon nanotubes, Mater. Chem. Phys., 2009, 118(1): 9
CrossRef
ADS
Google scholar
|
[134] |
Y. Zhou, J. Wang, Y. Hu, R. O’Hayre, and Z. Shao, A porous LiFePO4 and carbon nanotube composite, Chem. Commun., 2010, 46(38): 7151
CrossRef
ADS
Google scholar
|
[135] |
C. Ban, Z. Li, Z. Wu, M. J. Kirkham, L. Chen, Y. S. Jung, E. A. Payzant, Y. Yan, M. S. Whittingham, and C. Dillon, Extremely durable high-rate capability of a LiNi0.4Mn0.4Co0.2O2 cathode enabled with single-walled carbon nanotubes, Adv. Energy Mater., 2011, 1(1): 58
CrossRef
ADS
Google scholar
|
[136] |
J. J. Chen and M. S. Whittingham, Hydrothermal synthesis of lithium iron phosphate, Electrochem. Commun., 2006, 8(5): 855
CrossRef
ADS
Google scholar
|
[137] |
L. Wang, Y. D. Huang, R. R. Jiang, and D. Z. Jia, Nano-LiFePO4/MWCNT cathode materials prepared by roomtemperature solid-state reaction and microwave heating, J. Electrochem. Soc., 2007, 154(11): A1015
CrossRef
ADS
Google scholar
|
[138] |
Y. Q. Qiao, J. P. Tu, Y. J. Mai, L. J. Cheng, X. L.Wang, and C. D. Gu, Enhanced electrochemical performances of multiwalled carbon nanotubes modified Li3V2(PO4)3/C cathode material for lithium-ion batteries, J. Alloys Compd., 2011, 509(25): 7181
CrossRef
ADS
Google scholar
|
[139] |
K. Evanoff, J. Khan, A. A. Balandin, A. Magasinski, W. J. Ready, T. F. Fuller, and G. Yushin, Towards ultrathick battery electrodes: Aligned carbon nanotube-enabled architecture, Adv. Mater., 2012, 24(4): 533
CrossRef
ADS
Google scholar
|
[140] |
X. Chen, H. Zhu, Y. C. Chen, Y. Shang, A. Cao, L. Hu, and G. W. Rubloff, MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes, ACS Nano, 2012, 6(9): 7948
CrossRef
ADS
Google scholar
|
[141] |
D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourg, and A. M. Lubers, Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev., 2008, 38(1): 226
CrossRef
ADS
Google scholar
|
[142] |
I. S. Hwang, J. C. Kim, S. D. Seo, S. Lee, J. H. Lee, and D. W. Kim, A binder-free Genanoparticle anode assembled on multiwalled carbon nanotube networks for Li-ion batteries, Chem. Commun., 2012, 48(56): 7061
CrossRef
ADS
Google scholar
|
[143] |
W. Wang and P. N. Kumta, Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible highcapacity lithium-ion anodes, ACS Nano, 2010, 4(4): 2233
CrossRef
ADS
Google scholar
|
[144] |
L. F. Cui, L. B. Hu, J. W. Choi, and Y. Cui, Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries, ACS Nano, 2010, 4(7): 3671
CrossRef
ADS
Google scholar
|
[145] |
Y. Wu, Y. Wei, J. P. Wang, K. L. Jiang, and S. S. Fan, Nano Lett., 2012 (submitted)
|
[146] |
B. A. Johnson and R. E. White, Characterization of commercially available lithium-ion batteries, J. Power Sources, 1998, 70(1): 48
CrossRef
ADS
Google scholar
|
[147] |
P. Arora, R. E. White, and M. Doyle, Capacity fade mechanisms and side reactions in lithium-ion batteries, J. Electrochem. Soc., 1998, 145(10): 3647
CrossRef
ADS
Google scholar
|
[148] |
J. W. Braithwaite, A. Gonzales, G. Nagasubramanian, S. J. Lucero, D. E. Peebles, J. A. Ohlhausen, and W. R. Cieslak, Corrosion of lithium-ion battery current collectors, J. Electrochem. Soc., 1999, 146(2): 448
CrossRef
ADS
Google scholar
|
[149] |
A. Kiebele and G. Gruner, Carbon nanotube based battery architecture, Appl. Phys. Lett., 2007, 91(14): 144104
CrossRef
ADS
Google scholar
|
[150] |
Y. X. Zhou, L. B. Hu, and G. Gruner, A method of printing carbon nanotube thin films, Appl. Phys. Lett., 2006, 88(12): 123109
CrossRef
ADS
Google scholar
|
[151] |
L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, and Y. Cui, Highly conductive paper for energy-storage devices, Proc. Natl. Acad. Sci. USA, 2009, 106(51): 21490
CrossRef
ADS
Google scholar
|
[152] |
N. Singh, C. Galande, A. Miranda, A. Mathkar, W. Gao, A. L. M. Reddy, A. Vlad, and P. M. Ajayan, Paintable battery, Sci. Rep., 2012, 2:
|
[153] |
L. B. Hu, H. Wu, F. La Mantia, Y. A. Yang<?Pub Caret?>, and Y. Cui, Thin, flexible secondary li-ion paper batteries, ACS Nano, 2010, 4(10): 5843
CrossRef
ADS
Google scholar
|
[154] |
B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci., 2009, 2(6): 638
CrossRef
ADS
Google scholar
|
[155] |
K. Wang, S. Luo, Y. Wu, X. F. He, F. Zhao, J. P. Wang, K. L. Jiang, and S. S. Fan, Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries, Adv. Funct. Mater., 2013, 23(7): 846
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |