PDF
(1079KB)
Abstract
The development of lithium ion batteries (LIBs) relies on the improvement in the performance of electrode materials with higher capacity, higher rate capability, and longer cycle life. In this review article, the recent advances in carbon nanotube (CNT) anodes, CNT-based composite electrodes, and CNT current collectors for high performance LIBs are concerned. CNT has received considerable attentions as a candidate material for the LIB applications. In addition to a possible choice for anode, CNT has been recognized as a solution in improving the performance of the state-of-the-art electrode materials. The CNT-based composite electrodes can be fabricated by mechanical or chemical approaches. Owing to the large aspect ratio and the high electrical conductivity, CNTs at very low loading can lead to an efficient conductive network. The excellent mechanical strength suggests the great potential in forming a structure scaffold to accommodate nano-sized electrode materials. Accordingly, the incorporation of CNTs will enhance the conductivity of the composite electrodes, mitigate the agglomeration problem, decrease the dependence on inactive binders, and improve the electrochemical properties of both anode and cathode materials remarkably. Freestanding CNT network can be used as lightweight current collectors to increase the overall energy density of LIBs. Finally, research perspectives for exploiting CNTs in high-performance LIBs are discussed.
Graphical abstract
Keywords
lithium ion battery
/
carbon nanotube
/
composite
/
conductive additive
/
structural scaffold
Cite this article
Download citation ▾
Yang Wu, Jiaping Wang, Kaili Jiang, Shoushan Fan.
Applications of carbon nanotubes in high performance lithium ion batteries.
Front. Phys., 2014, 9(3): 351-369 DOI:10.1007/s11467-013-0308-x
| [1] |
M. Armand and J. M. Tarascon, Building better batteries, Nature, 2008, 451(7179): 652
|
| [2] |
B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 2011, 334(6058): 928
|
| [3] |
J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414(6861): 359
|
| [4] |
M. S. Whittingham, Electrical energy storage and intercalation chemistry, Science, 1976, 192(4244): 1126
|
| [5] |
M. S. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 2004, 104(10): 4271
|
| [6] |
K. Ozawa, Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system, Solid State Ion., 1994, 69(3-4): 212
|
| [7] |
M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 1998, 10(10): 725
|
| [8] |
H. Dai, Carbon nanotubes: opportunities and challenges, Surf. Sci., 2002, 500(1-3): 218
|
| [9] |
T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Electrical conductivity of individual carbon nanotubes, Nature, 1996, 382(6586): 54
|
| [10] |
M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 2000, 287(5453): 637
|
| [11] |
M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 1996, 381(6584): 678
|
| [12] |
R. Fong, U. Sacken, and J. R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, J. Electrochem. Soc., 1990, 137(7): 2009
|
| [13] |
Z. X. Shu, R. S. McMillan, and J. J. Murray, Electrochemical intercalation of lithium into graphite, J. Electrochem. Soc., 1993, 140(4): 922
|
| [14] |
M. S. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite, Adv. Phys., 1981, 30(2): 139
|
| [15] |
N. A. Kaskhedikar and J. Maier, Lithium storage in carbon nanostructures, Adv. Mater., 2009, 21(25-26): 2664
|
| [16] |
M. Armand and P. Touzain, Graphite intercalation compounds as cathode materials, Mater. Sci. Eng., 1977, 31(0): 319
|
| [17] |
L. Pauling, The structure and properties of graphite and boron nitride, Proc. Natl. Acad. Sci. USA, 1966, 56(6): 1646
|
| [18] |
J. R. Dahn, Phase diagram of LixC6, Phys. Rev. B, 1991, 44(17): 9170
|
| [19] |
N. Kambe, M. S. Dresselhaus, G. Dresselhaus, S. Basu, A. R. McGhie, and J. E. Fischer, Intercalate ordering in first stage graphite-lithium, Mater. Sci. Eng., 1979, 40(1): 1
|
| [20] |
T. Ohzuku, Y. Iwakoshi, and K. Sawai, Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell, J. Electrochem. Soc., 1993, 140(9): 2490
|
| [21] |
K. Persson, Y. Hinuma, Y. S. Meng, A. Van der Ven, and G. Ceder, Thermodynamic and kinetic properties of the Ligraphite system from first-principles calculations, Phys. Rev. B, 2010, 82(12): 125416
|
| [22] |
R. C. Boehm and A. Banerjee, Theoretical study of lithium intercalated graphite, J. Chem. Phys., 1992, 96(2): 1150
|
| [23] |
V. A. Nalimova, D. Guerard, M. Lelaurain, and O. V. Fateev, X-ray investigation of highly saturated Ligraphite intercalation compound, Carbon, 1995, 33(2): 177
|
| [24] |
V. V. Avdeev, V. A. Nalimova, and K. N. Semenenko, The alkali metals in graphite matrixes-new aspects of metallic state chemistry, High Press. Res., 1990, 6(1): 11
|
| [25] |
Y. Nagata, Y. Ohnishi, H. Hatori, M. Shiraishi, and T. Kajiyama, Carbonization of crystalline polyimide particles, Kobunshi Ronbunshu, 1996, 53(5): 302
|
| [26] |
A. Yasuda, N. Kawase, F. Banhart, W. Mizutani, T. Shimizu, and H. Tokumoto, Graphitization mechanism during the carbon-nanotube formation based on the in-situ HRTEM observation, J. Phys. Chem. B, 2002, 106(8): 1849
|
| [27] |
R. E. Franklin, Crystallite growth in graphitizing and nongraphitizing carbons, Proc. R. Soc. Lond. A: Math. Phys. Sci., 1951, 209(1097): 196
|
| [28] |
K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi, A. Mabuchi, and H. Fujimoto, The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries, J. Electrochem. Soc., 1995, 142(3): 716
|
| [29] |
N. Takami, A. Satoh, M. Hara, and T. Ohsaki, Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries, J. Electrochem. Soc., 1995, 142(2): 371
|
| [30] |
A. Satoh, N. Takami, and T. Ohsaki, Electrochemical intercalation of lithium into graphitized carbons, Solid State Ion., 1995, 80(3-4): 291
|
| [31] |
A. Mabuchi, K. Tokumitsu, H. Fujimoto, and T. Kasuh, Charge-discharge characteristics of the mesocarbon miocrobeads heat-treated at different temperatures, J. Electrochem. Soc., 1995, 142(4): 1041
|
| [32] |
J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science, 1995, 270(5236): 590
|
| [33] |
T. D. Tran, J. H. Feikert, X. Song, and K. Kinoshita, Commercial carbonaceous materials as lithium intercalation anodes, J. Electrochem. Soc., 1995, 142(10): 3297
|
| [34] |
C. Kim, T. Fujino, K. Miyashita, T. Hayashi, M. Endo, and M. S. Dresselhaus, Microstructure and electrochemical properties of boron-doped mesocarbon microbeads, J. Electrochem. Soc., 2000, 147(4): 1257
|
| [35] |
M. K. Song and K. T. No, Substitution effect of carbon with group 13, 14, and 15 elements on lithium intercalation in graphite, J. Electrochem. Soc., 2004, 151(10): A1696
|
| [36] |
T. Zheng, Y. Liu, E. W. Fuller, S. Tseng, U. Sacken, and J. R. Dahn, Lithium insertion in high capacity carbonaceous materials, J. Electrochem. Soc., 1995, 142(8): 2581
|
| [37] |
N. Takami, A. Satoh, T. Ohsaki, and M. Kanda, Lithium insertion and extraction for high-capacity disordered carbons with large hysteresis, Electrochim. Acta, 1997, 42(16): 2537
|
| [38] |
S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354(6348): 56
|
| [39] |
V. Meunier, J. Kephart, C. Roland, and J. Bernholc, Ab initio investigations of lithium diffusion in carbon nanotube systems, Phys. Rev. Lett., 2002, 88(7): 075506
|
| [40] |
Z. Zhou, X. P. Gao, J. Yan, D. Y. Song, and M. Morinaga, A first-principles study of lithium absorption in boronor nitrogen-doped single-walled carbon nanotubes, Carbon, 2004, 42(12-13): 2677
|
| [41] |
C. Garau, A. Frontera, D. Quinonero, A. Costa, P. Ballester, and P. M. Deya, Lithium diffusion in single-walled carbon nanotubes: A theoretical study, Chem. Phys. Lett., 2003, 374(5-6): 548
|
| [42] |
T. Kar, J. Pattanayak, and S. Scheiner, Insertion of lithium ions into carbon nanotubes: An ab initio study, J. Phys. Chem. A, 2001, 105(45): 10397
|
| [43] |
G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairac, and B. Simon, Electrochemical intercalation of lithium into multiwall carbon nanotubes, Chem. Phys. Lett., 1999, 312(1): 14
|
| [44] |
A. S. Claye, J. E. Fischer, C. B. Huffman, A. G. Rinzler, and R. E. Smalley, Solid-state electrochemistry of the Li single wall carbon nanotube system, J. Electrochem. Soc., 2000, 147(8): 2845
|
| [45] |
B. Gao, C. Bower, J. D. Lorentzen, L. Fleming, A. Kleinhammes, X. P. Tang, L. E. McNeil, Y. Wu, and O. Zhou, Enhanced saturation lithium composition in ball-milled singlewalled carbon nanotubes, Chem. Phys. Lett., 2000, 327(1-2): 69
|
| [46] |
G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production, Nature, 1998, 393(6683): 346
|
| [47] |
E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, and F. Beguin, Electrochemical storage of lithium in multiwalled carbon nanotubes, Carbon, 1999, 37(1): 61
|
| [48] |
E. Frackowiak and F. Beguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon, 2002, 40(10): 1775
|
| [49] |
B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, and O. Zhou, Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chem. Phys. Lett., 1999, 307(3-4): 153
|
| [50] |
G. X. Wang, J. H. Ahn, J. Yao, M. Lindsay, H. K. Liu, and S. X. Dou, Preparation and characterization of carbon nanotubes for energy storage, J. Power Sources, 2003, 119-121: 16
|
| [51] |
C. Masarapu, V. Subramanian, H. W. Zhu, and B. Q. Wei, Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries, Adv. Funct. Mater., 2009, 19(7): 1008
|
| [52] |
S. B. Yang, H. H. Song, X. H. Chen, A. V. Okotrub, and L. G. Bulusheva, Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries, Electrochim. Acta, 2007, 52(16): 5286
|
| [53] |
K. L. Jiang, Q. Q. Li, and S. S. Fan, Nanotechnology: Spinning continuous carbon nanotube yarns, Nature, 2002, 419(6909): 801
|
| [54] |
K. L. Jiang, J. P. Wang, Q. Q. Li, L. A. Liu, C. H. Liu, and S. S. Fan, Superaligned carbon nanotube arrays, films, and yarns: A road to applications, Adv. Mater., 2011, 23(9): 1154
|
| [55] |
H. Zhang, G. P. Cao, and Y. S. Yang, Carbon nanotube arrays and their composites for electrochemicalcapacitors and lithium-ion batteries, Energy Environ. Sci., 2009, 2(9): 932
|
| [56] |
S. H. Ng, J. Wang, Z. P. Guo, G. X. Wang, and H. K. Liu, Single wall carbon nanotube paper as anode for lithium-ion battery, Electrochim. Acta, 2005, 51(1): 23
|
| [57] |
S. Y. Chew, S. H. Ng, J. Z. Wang, P. Novak, F. Krumeich, S. L. Chou, J. Chen, and H. K. Liu, Flexible free-standing carbon nanotube films for model lithium-ion batteries, Carbon, 2009, 47(13): 2976
|
| [58] |
B. J. Landi, R. A. Dileo, C. M. Schauerman, C. D. Cress, M. J. Ganter, and R. P. Raffaelle, Multi-walled carbon nanotube paper anodes for lithium ion batteries, J. Nanosci. Nanotechnol., 2009, 9(6): 3406
|
| [59] |
J. Chen, A. I. Minett, Y. Liu, C. Lynam, P. Sherrell, C. Wang, and G. G. Wallace, Direct growth of flexible carbon nanotube electrodes, Adv. Mater., 2008, 20(3): 566
|
| [60] |
G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, and W. Z. Li, Structure and lithium insertion properties of carbon nanotubes, J. Electrochem. Soc., 1999, 146(5): 1696
|
| [61] |
J. Zhao, A. Buldum, J. Han, and J. Ping Lu, First-principles study of li-intercalated carbon nanotube ropes, Phys. Rev Lett., 2000, 85(8): 1706
|
| [62] |
J. Li, C. Wu and L. Guan, Lithium insertion/extraction properties of nanocarbon materials, J. Phys. Chem. C, 2009, 113(42): 18431
|
| [63] |
X. X.Wang, J. N.Wang, H. Chang, and Y. F. Zhang, Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries, Adv. Funct. Mater., 2007, 17(17): 3613
|
| [64] |
D. T. Welna, L. T. Qu, B. E. Taylor, L. M. Dai, and M. F. Durstock, Vertically aligned carbon nanotube electrodes for lithium-ion batteries, J. Power Sources, 2011, 196(3): 1455
|
| [65] |
I. Lahiri, S. W. Oh, J. Y. Hwang, S. Cho, Y. K. Sun, R. Banerjee, and W. Choi, High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper, ACS Nano, 2010, 4(6): 3440
|
| [66] |
I. Mukhopadhyay, N. Hoshino, S. Kawasaki, F. Okino, W. K. Hsu, and H. Touhara, Electrochemical Li insertion in B-doped multiwall carbon nanotubes, J. Electrochem. Soc., 2002, 149(1): A39
|
| [67] |
L. G. Bulusheva, A. V. Okotrub, A. G. Kurenya, H. K. Zhang, H. J. Zhang, X. H. Chen, and H. H. Song, Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries, Carbon, 2011, 49(12): 4013
|
| [68] |
X. L. Li, F. Y. Kang, X. D. Bai, and W. Shen, A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries, Electrochem. Commun., 2007, 9(4): 663
|
| [69] |
B. Jin, E. M. Jin, K. H. Park, and H. B. Gu, Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery, Electrochem. Commun., 2008, 10(10): 1537
|
| [70] |
Y. J. Liu, X. H. Li, H. J. Guo, Z. X. Wang, W. J. Peng, Y. Yang, and R. F. Liang, Effect of carbon nanotube on the electrochemical performance of C-LiFePO4/graphite battery, J. Power Sources, 2008, 184(2): 522
|
| [71] |
Y. Feng, The preparation and electrochemical performances of LiFePO4-multiwalled nanotubes composite cathode materials for lithium ion batteries, Mater. Chem. Phys., 2010, 121(1-2): 302
|
| [72] |
T. Muraliganth, A. V. Murugan, and A. Manthiram, Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries, J. Mater. Chem., 2008, 18(46): 5661
|
| [73] |
G. P. Wang, Q. T. Zhang, Z. L. Yu, and M. Z. Qu, The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes, Solid State Ion., 2008, 179(7-8): 263
|
| [74] |
K. Sheem, Y. H. Lee, and H. S. Lim, High-density positive electrodes containing carbon nanotubes for use in Li-ion cells, J. Power Sources, 2006, 158(2): 1425
|
| [75] |
J. H. Park, S. Y. Lee, J. H. Kim, S. Ahn, J. S. Park, and Y. U. Jeong, Effect of conducting additives on the properties of composite cathodes for lithium-ion batteries, J. Solid State Electrochem., 2010, 14(4): 593
|
| [76] |
J. H. Lee, G. S. Kim, Y. M. Choi, W. Il Park, J. A. Rogers, and U. Paik, Comparison of multiwalled carbon nanotubes and carbon black as percolative paths in aqueous-based natural graphite negative electrodes with high-rate capability for lithium-ion batteries, J. Power Sources, 2008, 184(1): 308
|
| [77] |
X. L. Li, F. Y. Kang, and W. C. Shen, Multiwalled carbon nanotubes as a conducting additive in a LiNi0.7Co0.3O2cathode for rechargeable lithium batteries, Carbon, 2006, 44(7): 1334
|
| [78] |
X. L. Li, F. Y. Kang, and W. C. Shen, A comparative investigation on multiwalled carbon nanotubes and carbon black as conducting additive in LiNi0.7Co0.3O2, Electrochem. Solid-State Lett., 2006, 9(3): A126
|
| [79] |
A. Varzi, C. Taubert, M. Wohlfahrt-Mehrens, M. Kreis, and W. Schutz, Study of multi-walled carbon nanotubes for lithium-ion battery electrodes, J. Power Sources, 2011, 196(6): 3303
|
| [80] |
J. Y. Eom, J. W. Park, H. S. Kwon, and S. Rajendran, Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling, J. Electrochem. Soc., 2006, 153(9): A1678
|
| [81] |
C. Sotowa, G. Origi, M. Takeuchi, Y. Nishimura, K. Takeuchi, I. Y. Jang, Y. J. Kim, T. Hayashi, Y. A. Kim, M. Endo, and M. S. Dresselhaus, The reinforcing effect of combined carbon nanotubes and acetylene blacks on the positive electrode of lithium-ion batteries, ChemSusChem, 2008, 1(11): 911
|
| [82] |
X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, Spinning and processing continuous yarns from 4-inch wafer scale superaligned carbon nanotube arrays, Adv. Mater., 2006, 18(12): 1505
|
| [83] |
K. Liu, Y. H. Sun, L. Chen, C. Feng, X. F. Feng, K. L. Jiang, Y. G. Zhao, and S. S. Fan, Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties, Nano Lett., 2008, 8(2): 700
|
| [84] |
K. Wang, Y. Wu, S. Luo, X. F. He, J. P. Wang, K. L. Jiang, and S. S. Fan, J. Power Sources, 2012 (submitted)
|
| [85] |
S. Luo, K. Wang, J. Wang, K. Jiang, Q. Li, and S. Fan, Binder-free LiCoO2 /carbon nanotube cathodes for high-performance lithium ion batteries, Adv. Mater., 2012, 24(17): 2294
|
| [86] |
M. D. Lima, S. Fang, X. Lepro, C. Lewis, R. Ovalle-Robles, J. Carretero-Gonzalez, E. Castillo-Martinez, M. E. Kozlov, J. Oh, N. Rawat, C. S. Haines, M. H. Haque, V. Aare, S. Stoughton, A. A. Zakhidov, and R. H. Baughman, Biscrolling nanotube sheets and functional guests into yarns, Science, 2011, 331(6013): 51
|
| [87] |
Z. Chen, D. Q. Zhang, X. L. Wang, X. L. Jia, F. Wei, H. X. Li, and Y. F. Lu, High-performance energy-storage architectures from carbon nanotubes and nanocrystal building blocks, Adv. Mater., 2012, 24(15): 2030
|
| [88] |
O. Toprakci, H. A. K. Toprakci, L. W. Ji, G. J. Xu, Z. Lin, and X. W. Zhang, Carbon nanotube-loaded electrospun LiFePO4 /carbon composite nanofibers As stable and binder-free cathodes for rechargeable lithium-ion batteries, ACS Appl. Mater. Interfaces, 2012, 4(3): 1273
|
| [89] |
P. G. Bruce, B. Scrosati, and J. M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed., 2008, 47(16): 2930
|
| [90] |
C. M. Hayner, X. Zhao, and H. H. Kung, Materials for rechargeable lithium-ion batteries, Annu. Rev. Chem. Biomol. Eng., 2012, 3: 445
|
| [91] |
S. -D. Seo, G. -H. Lee, A. -H. Lim, K. -M. Min, J. -C. Kim, H. -W. Shim, K. -S. Park, and D. -W. Kim, Direct assembly of tin-MWCNT 3D-networked anode for rechargeable lithium ion batteries, RSC Advances, 2012, 2(8): 3315
|
| [92] |
W. X. Chen, J. Y. Lee, and Z. Liu, Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites, Electrochem. Commun., 2002, 4(3): 260
|
| [93] |
M. S. Park, S. A. Needham, G. X. Wang, Y. M. Kang, J. S. Park, S. X. Dou, and H. K. Liu, Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries, Chem. Mater., 2007, 19(10): 2406
|
| [94] |
O. Crosnier, T. Brousse, X. Devaux, P. Fragnaud, and D. M. Schleich, New anode systems for lithium ion cells, J. Power Sources, 2001, 94(2): 169
|
| [95] |
J. O. Besenhard, J. Yang, and M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources, 1997, 68(1): 87
|
| [96] |
T. P. Kumar, R. Ramesh, Y. Y. Lin, and G. T. K. Fey, Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries, Electrochem. Commun., 2004, 6(6): 520
|
| [97] |
Y. Wang and J. Y. Lee, One-step, confined growth of bimetallic tin–antimony nanorods in carbon nanotubes grown in situ for reversible Li+ ion storage, Angew. Chem. Int. Ed., 2006, 45(42): 7039
|
| [98] |
L. Huang, J. S. Cai, Y. He, F. S. Ke, and S. G. Sun, Structure and electrochemical performance of nanostructured Sn–Co alloy/carbon nanotube composites as anodes for lithium ion batteries, Electrochem. Commun., 2009, 11(5): 950
|
| [99] |
K. D. Kepler, J. T. Vaughey, and M. M. Thackeray, LixCu6Sn5(0<x<13): An intermetallic insertion electrode for rechargeable lithium batteries, Electrochem. Solid-State Lett., 1999, 2(7): 307
|
| [100] |
C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes, ACS Nano, 2010, 4(3): 1443
|
| [101] |
C. Martin, O. Crosnier, R. Retoux, D. Belanger, D. M. Schleich, and T. Brousse, Chemical coupling of carbon nanotubes and silicon nanoparticles for improved negative electrode performance in lithium-ion batteries, Adv. Funct. Mater., 2011, 21(18): 3524
|
| [102] |
G. Chen, Z. Y. Wang, and D. G. Xia, One-Pot Synthesis of Carbon Nanotube@SnO2–Au Coaxial Nanocable for Lithium-Ion Batteries with High Rate Capability, Chem. Mater., 2008, 20(22): 6951
|
| [103] |
Z. H. Wen, Q. Wang, Q. Zhang, and J. H. Li, In Situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries, Adv. Funct. Mater., 2007, 17(15): 2772
|
| [104] |
L. Noerochim, J. Z. Wang, S. L. Chou, H. J. Li, and H. K. Liu, SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries, Electrochim. Acta, 2010, 56(1): 314
|
| [105] |
H. X. Zhang, C. Feng, Y. C. Zhai, K. L. Jiang, Q. Q. Li, and S. S. Fan, Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries, Adv. Mater., 2009, 21(22): 2299
|
| [106] |
J. Xie and V. K. Varadan, Synthesis and characterization of high surface area tin oxide/functionalized carbon nanotubes composite as anode materials, Mater. Chem. Phys., 2005, 91(2-3): 274
|
| [107] |
G. M. An, N. Na, X. R. Zhang, Z. J. Miao, S. D. Miao, K. L. Ding, and Z. M. Liu, SnO2 /carbon nanotube nanocomposites synthesized in supercritical fluids: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery, Nanotechnology, 2007, 18(43): 435707
|
| [108] |
Y. B. Fu, R. B. Ma, Y. Shu, Z. Cao, and X. H. Ma, Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications, Mater. Lett., 2009, 63(22): 1946
|
| [109] |
G. D. Du, C. Zhong, P. Zhang, Z. P. Guo, Z. X. Chen, and H. K. Liu, Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries, Electrochim. Acta, 2010, 55(7): 2582
|
| [110] |
C. H. Xu, J. Sun, and L. Gao, Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnO2 nanoparticles and their high performance in lithium-ion batteries, J. Phys. Chem. C, 2009, 113(47): 20509
|
| [111] |
Z. Y. Wang, G. Chen, and D. G. Xia, Coating of multiwalled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery, J. Power Sources, 2008, 184(2): 432
|
| [112] |
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, Nano-sized transition-metal oxides as negativeelectrode materials for lithium-ion batteries, Nature, 2000, 407(6803): 496
|
| [113] |
J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions, Adv. Mater., 2010, 22(35): E170
|
| [114] |
C. M. Ban, Z. C. Wu, D. T. Gillaspie, L. Chen, Y. F. Yan, J. L. Blackburn, and A. C. Dillon, Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode, Adv. Mater., 2010, 22(20): E145
|
| [115] |
A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, Coaxial MnO2 /carbon nanotube array electrodes for high-performance lithium batteries, Nano Lett., 2009, 9(3): 1002
|
| [116] |
F. Teng, S. Santhanagopalan, and D. D. Meng, Microstructure control of MnO2/CNT hybrids under in-situ hydrothermal conditions, Solid State Sci., 2010, 12(9): 1677
|
| [117] |
Z. Wang, D. Luan, S. Madhavi, Y. Hu, and X. W. Lou, Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability, Energy Environ. Sci., 2012, 5(1): 5252
|
| [118] |
Y. He, L. Huang, J. S. Cai, X. M. Zheng, and S. G. Sun, Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries, Electrochim. Acta, 2010, 55(3): 1140
|
| [119] |
H. Xia, M. O. Lai, and L. Lu, Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries, J. Mater. Chem., 2010, 20(33): 6896
|
| [120] |
G. X. Wang, X. P. Shen, J. N. Yao, D. Wexler, and J. Ahn, Hydrothermal synthesis of carbon nanotube/cobalt oxide core-shell one-dimensional nanocomposite and application as an anode material for lithium-ion batteries, Electrochem. Commun., 2009, 11(3): 546
|
| [121] |
A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia, and P. G. Bruce, Lithium-ion intercalation into TiO2-B nanowires, Adv. Mater., 2005, 17(7): 862
|
| [122] |
P. Liu, S. H. Lee, C. e. Tracy, Y. Yan, and J. Turner, Preparation and lithium insertion properties of mesoporous vanadium oxide, Adv. Mater., 2002, 14(1): 27
|
| [123] |
C. M. Julien, Lithium intercalated compounds, Mater. Sci. Eng. Rep., 2003, 40(2): 47
|
| [124] |
Y. S. Hu, L. Kienle, Y. G. Guo, and J. Maier, High lithium electroactivity of nanometer-sized rutile TiO2, Adv. Mater., 2006, 18(11): 1421
|
| [125] |
Z. X. Yang, G. D. Du, Z. P. Guo, X. B. Yu, Z. X. Chen, T. L. Guo, and H. K. Liu, TiO2(B)@carbon composite nanowires as anode for lithium ion batteries with enhanced reversible capacity and cyclic performance, J. Mater. Chem., 2011, 21(24): 8591
|
| [126] |
L. Shen, C. Yuan, H. Luo, X. Zhang, K. Xu, and F. Zhang, In situ growth of Li4Ti5O12 on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries, J. Mater. Chem., 2011, 21(3): 761
|
| [127] |
J. J. Huang, and Z. Y. Jiang, The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery, Electrochim. Acta, 2008, 53(26): 7756
|
| [128] |
F. F. Cao, Y. G. Guo, S. F. Zheng, X. L. Wu, L. Y. Jiang, R. R. Bi, L. J. Wan, and J. Maier, Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morpholog-ical solution to the lithium storage problem, Chem. Mater., 2010, 22(5): 1908
|
| [129] |
D. H. Lee, D. W. Kim, and J. G. Park, Enhanced rate capabilities of nanobrookite with electronically conducting MWCNT networks, Cryst. Growth Des., 2008, 8(12): 4506
|
| [130] |
J. S. Sakamoto and B. Dunn, Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries, J. Electrochem. Soc., 2002, 149(1): A26
|
| [131] |
X. Jia, Z. Chen, A. Suwarnasarn, L. Rice, X.Wang, H. Sohn, Q. Zhang, B. M. Wu, F. Wei, and Y. Lu, High-performance flexible lithium-ion electrodes based on robust network architecture, Energy Environ. Sci., 2012, 5(5): 6845
|
| [132] |
X. M. Liu, Z. D. Huang, S. Oh, P. C. Ma, P. C. H. Chan, G. K. Vedam, K. Kang, and J. K. Kim, Sol-gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries, J. Power Sources, 2010, 195(13): 4290
|
| [133] |
J. Xu, G. Chen, and X. Li, Electrochemical performance of LiFePO4 cathode material coated with multi-wall carbon nanotubes, Mater. Chem. Phys., 2009, 118(1): 9
|
| [134] |
Y. Zhou, J. Wang, Y. Hu, R. O’Hayre, and Z. Shao, A porous LiFePO4 and carbon nanotube composite, Chem. Commun., 2010, 46(38): 7151
|
| [135] |
C. Ban, Z. Li, Z. Wu, M. J. Kirkham, L. Chen, Y. S. Jung, E. A. Payzant, Y. Yan, M. S. Whittingham, and C. Dillon, Extremely durable high-rate capability of a LiNi0.4Mn0.4Co0.2O2 cathode enabled with single-walled carbon nanotubes, Adv. Energy Mater., 2011, 1(1): 58
|
| [136] |
J. J. Chen and M. S. Whittingham, Hydrothermal synthesis of lithium iron phosphate, Electrochem. Commun., 2006, 8(5): 855
|
| [137] |
L. Wang, Y. D. Huang, R. R. Jiang, and D. Z. Jia, Nano-LiFePO4/MWCNT cathode materials prepared by roomtemperature solid-state reaction and microwave heating, J. Electrochem. Soc., 2007, 154(11): A1015
|
| [138] |
Y. Q. Qiao, J. P. Tu, Y. J. Mai, L. J. Cheng, X. L.Wang, and C. D. Gu, Enhanced electrochemical performances of multiwalled carbon nanotubes modified Li3V2(PO4)3/C cathode material for lithium-ion batteries, J. Alloys Compd., 2011, 509(25): 7181
|
| [139] |
K. Evanoff, J. Khan, A. A. Balandin, A. Magasinski, W. J. Ready, T. F. Fuller, and G. Yushin, Towards ultrathick battery electrodes: Aligned carbon nanotube-enabled architecture, Adv. Mater., 2012, 24(4): 533
|
| [140] |
X. Chen, H. Zhu, Y. C. Chen, Y. Shang, A. Cao, L. Hu, and G. W. Rubloff, MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes, ACS Nano, 2012, 6(9): 7948
|
| [141] |
D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourg, and A. M. Lubers, Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev., 2008, 38(1): 226
|
| [142] |
I. S. Hwang, J. C. Kim, S. D. Seo, S. Lee, J. H. Lee, and D. W. Kim, A binder-free Genanoparticle anode assembled on multiwalled carbon nanotube networks for Li-ion batteries, Chem. Commun., 2012, 48(56): 7061
|
| [143] |
W. Wang and P. N. Kumta, Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible highcapacity lithium-ion anodes, ACS Nano, 2010, 4(4): 2233
|
| [144] |
L. F. Cui, L. B. Hu, J. W. Choi, and Y. Cui, Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries, ACS Nano, 2010, 4(7): 3671
|
| [145] |
Y. Wu, Y. Wei, J. P. Wang, K. L. Jiang, and S. S. Fan, Nano Lett., 2012 (submitted)
|
| [146] |
B. A. Johnson and R. E. White, Characterization of commercially available lithium-ion batteries, J. Power Sources, 1998, 70(1): 48
|
| [147] |
P. Arora, R. E. White, and M. Doyle, Capacity fade mechanisms and side reactions in lithium-ion batteries, J. Electrochem. Soc., 1998, 145(10): 3647
|
| [148] |
J. W. Braithwaite, A. Gonzales, G. Nagasubramanian, S. J. Lucero, D. E. Peebles, J. A. Ohlhausen, and W. R. Cieslak, Corrosion of lithium-ion battery current collectors, J. Electrochem. Soc., 1999, 146(2): 448
|
| [149] |
A. Kiebele and G. Gruner, Carbon nanotube based battery architecture, Appl. Phys. Lett., 2007, 91(14): 144104
|
| [150] |
Y. X. Zhou, L. B. Hu, and G. Gruner, A method of printing carbon nanotube thin films, Appl. Phys. Lett., 2006, 88(12): 123109
|
| [151] |
L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, and Y. Cui, Highly conductive paper for energy-storage devices, Proc. Natl. Acad. Sci. USA, 2009, 106(51): 21490
|
| [152] |
N. Singh, C. Galande, A. Miranda, A. Mathkar, W. Gao, A. L. M. Reddy, A. Vlad, and P. M. Ajayan, Paintable battery, Sci. Rep., 2012, 2:481
|
| [153] |
L. B. Hu, H. Wu, F. La Mantia, Y. A. Yang<?Pub Caret?> and Y. Cui, Thin, flexible secondary li-ion paper batteries, ACS Nano, 2010, 4(10): 5843
|
| [154] |
B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci., 2009, 2(6): 638
|
| [155] |
K. Wang, S. Luo, Y. Wu, X. F. He, F. Zhao, J. P. Wang, K. L. Jiang, and S. S. Fan, Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries, Adv. Funct. Mater., 2013, 23(7): 846
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag Berlin Heidelberg