Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

Neil P. Dasgupta , Peidong Yang

Front. Phys. ›› 2014, Vol. 9 ›› Issue (3) : 289 -302.

PDF (803KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (3) : 289 -302. DOI: 10.1007/s11467-013-0305-0
Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber)

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

Author information +
History +
PDF (803KB)

Abstract

Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

Graphical abstract

Keywords

nanowire / photovoltaics / artificial photosynthesis / photoelectrochemistry / solar energy

Cite this article

Download citation ▾
Neil P. Dasgupta, Peidong Yang. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion. Front. Phys., 2014, 9(3): 289-302 DOI:10.1007/s11467-013-0305-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, Nanowire solar cells, Annu. Rev. Mater. Res., 2011, 41(1): 269

[2]

A. I. Hochbaum and P. Yang, Semiconductor nanowires for energy conversion, Chem. Rev., 2010, 110(1): 527

[3]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys., 2005, 97(11): 114302

[4]

L. Hu and G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications, Nano Lett., 2007, 7(11): 3249

[5]

E. Garnett and P. Yang, Light trapping in silicon nanowire solar cells, Nano Lett., 2010, 10(3): 1082

[6]

N. P. Dasgupta, S. Xu, H. J. Jung, A. Iancu, R. Fasching, R. Sinclair, and F. B. Prinz, Nickel silicide nanowire arrays for anti-reflective electrodes in photovoltaics, Adv. Funct. Mater., 2012, 22(17): 3650

[7]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications, Nano Lett., 2008, 8(9): 2638

[8]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Silicon nanowire solar cells, Appl. Phys. Lett., 2007, 91(23): 233117

[9]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables (version 40), Prog. Photovolt. Res. Appl., 2012, 20(5): 606

[10]

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, General route to vertical ZnO nanowire arrays using textured ZnO seeds, Nano Lett., 2005, 5(7): 1231

[11]

L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. Yang, Solution-grown zinc oxide nanowires, Inorg. Chem., 2006, 45(19): 7535

[12]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells, Nat. Mater., 2005, 4(6): 455

[13]

A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B, 2000, 104(5): 949

[14]

M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. Yang, ZnO-Al2 O3 and ZnO-TiO2 core–shell nanowire dye-sensitized solar cells, J. Phys. Chem. B, 2006, 110(45): 22652

[15]

L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, ZnO-TiO2 Core–Shell Nanorod/P3HT Solar Cells, J. Phys. Chem. C, 2007, 111(50): 18451

[16]

B. D. Yuhas and P. D. Yang, Nanowire-based all-oxide solar cells, J. Am. Chem. Soc., 2009, 131(10): 3756

[17]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater., 2010, 9(3): 239

[18]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, Nanodome solar cells with efficient light management and self-cleaning, Nano Lett., 2010, 10(6): 1979

[19]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays, Nano Lett., 2009, 9(1): 279

[20]

E. Yablonovitch and G. D. Cody, Intensity enhancement in textured optical sheets for solar cells, IEEE Trans. Electron. Dev., 1982, 29(2): 300

[21]

M. G. Mauk, Silicon solar cells: Physical metallurgy principles, J. Miner. Met. Mater. Soc., 2003, 55(5): 38

[22]

A. Boukai, P. Haney, A. Katzenmeyer, G. M. Gallatin, A. A. Talin, and P. Yang, Efficiency enhancement of copper contaminated radial p–n junction solar cells, Chem. Phys. Lett., 2011, 501(4-6): 153

[23]

B. Tian, T. J. Kempa, and C. M. Lieber, Single nanowire photovoltaics, Chem. Soc. Rev., 2009, 38(1): 16

[24]

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, Photovoltaic measurements in single-nanowire silicon solar cells, Nano Lett., 2008, 8(2): 710

[25]

B. Z. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature, 2007, 449(7164): 885

[26]

S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. Jan Anton Koster, J. Gilot, J. Loos, V. Schmidt, and R. A. J. Janssen, The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells, Nat. Mater., 2009, 8(10): 818

[27]

A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton, J. J. M.Fréchet, and P. Yang, Oligo-and Polythiophene/ZnO hybrid nanowire solar cells, Nano Lett., 2010, 10(1): 334

[28]

J. A. Czaban, D. A. Thompson, and R. R. Lapierre, GaAs coretshell nanowires for photovoltaic applications, Nano Lett., 2009, 9(1): 148

[29]

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, Solution-processed core–shell nanowires for efficient photovoltaic cells, Nat. Nanotechnol., 2011, 6(9): 568

[30]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, Semiconductor nanowire optical antenna solar absorbers, Nano Lett., 2010, 10(2): 439

[31]

L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, Engineering light absorption in semiconductor nanowire devices, Nat. Mater., 2009, 8(8): 643

[32]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Plasmonic nanostructure design for efficient light coupling into solar cells, Nano Lett., 2008, 8(12): 4391

[33]

K. Nakayama, K. Tanabe, and H. A. Atwater, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Appl. Phys. Lett., 2008, 93(12): 121904

[34]

H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater., 2010, 9(3): 205

[35]

S. Brittman, H. Gao, E. C. Garnett, and P. Yang, Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal, Nano Lett., 2011, 11(12): 5189

[36]

N. S. Lewis and D. G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. USA, 2006, 103(43): 15729

[37]

A. Listorti, J. Durrant, and J. Barber, Artificial photosynthesis: Solar to fuel, Nat. Mater., 2009, 8(12): 929

[38]

P. Yang, Semiconductor nanowire building blocks: From flux line pinning to artificial photosynthesis, MRS Bull., 2012, 37(09): 806

[39]

M. G.Walter, E. L.Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells, Chem. Rev., 2010, 110(11): 6446

[40]

A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238(5358): 37

[41]

A. J. Nozik, p-n photoelectrolysis cells, Appl. Phys. Lett., 1976, 29(3): 150

[42]

K. Ohashi, J. Mccann, and J. O. M. Bockris, Stable photoelectrochemical cells for the splitting of water, Nature, 1977, 266(5603): 610

[43]

A. Kudo, Z-scheme photocatalyst systems for water splitting under visible light irradiation, MRS Bull., 2011, 36(01): 32

[44]

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes, Science, 2010, 327(5962): 185

[45]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, Photoelectrochemical hydrogen evolution using Si microwire arrays, J. Am. Chem. Soc., 2011, 133(5): 1216

[46]

A. Heller, E. Aharon-Shalom, W. A. Bonner, and B. Miller, Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst, J. Am. Chem. Soc., 1982, 104(25): 6942

[47]

Y. Hou, B. L. Abrams, P. C. K.Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Nöskov, and I. Chorkendorff, Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution, Nat. Mater., 2011, 10(6): 434

[48]

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jøgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nøskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc., 2005, 127(15): 5308

[49]

M. Tomkiewicz and J. M. Woodall, Photoassisted electrolysis of water by visible irradiation of a p-type gallium phosphide electrode, Science, 1977, 196(4293): 990

[50]

J. Sun, C. Liu, and P. Yang, Surfactant-free, large-scale, solution–liquid–solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction, J. Am. Chem. Soc., 2011, 133(48): 19306

[51]

C. Liu, J. Sun, J. Tang, and P. Yang, Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactantfree solution synthesis, Nano Lett., 2012, 12(10): 5407

[52]

Y. J. Hwang, C. Hahn, B. Liu, and P. Yang, Photoelectrochemical properties of TiO2 nanowire arrays: A study of the dependence on length and atomic layer deposition coating, ACS Nano, 2012, 6(6): 5060

[53]

F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, Passivating surface states on water splitting hematite photoanodes with alumina overlayers, Chem. Sci., 2011, 2(4): 737

[54]

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation, Nat. Mater., 2011, 10(7): 539

[55]

Y. J. Hwang, A. Boukai, and P. D. Yang, High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity, Nano Lett., 2009, 9(1): 410

[56]

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, Complete composition tunability of InGaN nanowires using a combinatorial approach, Nat. Mater., 2007, 6(12): 951

[57]

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties, Nano Lett., 2012, 12(3): 1678

[58]

C. Liu, Y. J. Hwang, H. E. Jeong, and P. Yang, Light-induced charge transport within a single asymmetric nanowire, Nano Lett., 2011, 11(9): 3755

[59]

P. Yang and J. M. Tarascon, Towards systems materials engineering, Nat. Mater., 2012, 11(7): 560

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (803KB)

1304

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/