Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

Neil P. Dasgupta, Peidong Yang

PDF(803 KB)
PDF(803 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (3) : 289-302. DOI: 10.1007/s11467-013-0305-0
Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber)
Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber)

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

Author information +
History +

Abstract

Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

Graphical abstract

Keywords

nanowire / photovoltaics / artificial photosynthesis / photoelectrochemistry / solar energy

Cite this article

Download citation ▾
Neil P. Dasgupta, Peidong Yang. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion. Front. Phys., 2014, 9(3): 289‒302 https://doi.org/10.1007/s11467-013-0305-0

References

[1]
E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, Nanowire solar cells, Annu. Rev. Mater. Res., 2011, 41(1): 269
CrossRef ADS Google scholar
[2]
A. I. Hochbaum and P. Yang, Semiconductor nanowires for energy conversion, Chem. Rev., 2010, 110(1): 527
CrossRef ADS Google scholar
[3]
B. M. Kayes, H. A. Atwater, and N. S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys., 2005, 97(11): 114302
CrossRef ADS Google scholar
[4]
L. Hu and G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications, Nano Lett., 2007, 7(11): 3249
CrossRef ADS Google scholar
[5]
E. Garnett and P. Yang, Light trapping in silicon nanowire solar cells, Nano Lett., 2010, 10(3): 1082
CrossRef ADS Google scholar
[6]
N. P. Dasgupta, S. Xu, H. J. Jung, A. Iancu, R. Fasching, R. Sinclair, and F. B. Prinz, Nickel silicide nanowire arrays for anti-reflective electrodes in photovoltaics, Adv. Funct. Mater., 2012, 22(17): 3650
CrossRef ADS Google scholar
[7]
O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications, Nano Lett., 2008, 8(9): 2638
CrossRef ADS Google scholar
[8]
L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Silicon nanowire solar cells, Appl. Phys. Lett., 2007, 91(23): 233117
CrossRef ADS Google scholar
[9]
M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables (version 40), Prog. Photovolt. Res. Appl., 2012, 20(5): 606
CrossRef ADS Google scholar
[10]
L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, General route to vertical ZnO nanowire arrays using textured ZnO seeds, Nano Lett., 2005, 5(7): 1231
CrossRef ADS Google scholar
[11]
L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. Yang, Solution-grown zinc oxide nanowires, Inorg. Chem., 2006, 45(19): 7535
CrossRef ADS Google scholar
[12]
M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells, Nat. Mater., 2005, 4(6): 455
CrossRef ADS Google scholar
[13]
A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B, 2000, 104(5): 949
CrossRef ADS Google scholar
[14]
M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. Yang, ZnO-Al2 O3 and ZnO-TiO2 core–shell nanowire dye-sensitized solar cells, J. Phys. Chem. B, 2006, 110(45): 22652
CrossRef ADS Google scholar
[15]
L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, ZnO-TiO2 Core–Shell Nanorod/P3HT Solar Cells, J. Phys. Chem. C, 2007, 111(50): 18451
CrossRef ADS Google scholar
[16]
B. D. Yuhas and P. D. Yang, Nanowire-based all-oxide solar cells, J. Am. Chem. Soc., 2009, 131(10): 3756
CrossRef ADS Google scholar
[17]
M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater., 2010, 9(3): 239
[18]
J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, Nanodome solar cells with efficient light management and self-cleaning, Nano Lett., 2010, 10(6): 1979
CrossRef ADS Google scholar
[19]
J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays, Nano Lett., 2009, 9(1): 279
CrossRef ADS Google scholar
[20]
E. Yablonovitch and G. D. Cody, Intensity enhancement in textured optical sheets for solar cells, IEEE Trans. Electron. Dev., 1982, 29(2): 300
CrossRef ADS Google scholar
[21]
M. G. Mauk, Silicon solar cells: Physical metallurgy principles, J. Miner. Met. Mater. Soc., 2003, 55(5): 38
CrossRef ADS Google scholar
[22]
A. Boukai, P. Haney, A. Katzenmeyer, G. M. Gallatin, A. A. Talin, and P. Yang, Efficiency enhancement of copper contaminated radial p–n junction solar cells, Chem. Phys. Lett., 2011, 501(4-6): 153
CrossRef ADS Google scholar
[23]
B. Tian, T. J. Kempa, and C. M. Lieber, Single nanowire photovoltaics, Chem. Soc. Rev., 2009, 38(1): 16
CrossRef ADS Google scholar
[24]
M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, Photovoltaic measurements in single-nanowire silicon solar cells, Nano Lett., 2008, 8(2): 710
CrossRef ADS Google scholar
[25]
B. Z. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature, 2007, 449(7164): 885
CrossRef ADS Google scholar
[26]
S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. Jan Anton Koster, J. Gilot, J. Loos, V. Schmidt, and R. A. J. Janssen, The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells, Nat. Mater., 2009, 8(10): 818
CrossRef ADS Google scholar
[27]
A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton, J. J. M.Fréchet, and P. Yang, Oligo-and Polythiophene/ZnO hybrid nanowire solar cells, Nano Lett., 2010, 10(1): 334
CrossRef ADS Google scholar
[28]
J. A. Czaban, D. A. Thompson, and R. R. Lapierre, GaAs coretshell nanowires for photovoltaic applications, Nano Lett., 2009, 9(1): 148
CrossRef ADS Google scholar
[29]
J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, Solution-processed core–shell nanowires for efficient photovoltaic cells, Nat. Nanotechnol., 2011, 6(9): 568
CrossRef ADS Google scholar
[30]
L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, Semiconductor nanowire optical antenna solar absorbers, Nano Lett., 2010, 10(2): 439
CrossRef ADS Google scholar
[31]
L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, Engineering light absorption in semiconductor nanowire devices, Nat. Mater., 2009, 8(8): 643
CrossRef ADS Google scholar
[32]
V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Plasmonic nanostructure design for efficient light coupling into solar cells, Nano Lett., 2008, 8(12): 4391
CrossRef ADS Google scholar
[33]
K. Nakayama, K. Tanabe, and H. A. Atwater, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Appl. Phys. Lett., 2008, 93(12): 121904
CrossRef ADS Google scholar
[34]
H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater., 2010, 9(3): 205
CrossRef ADS Google scholar
[35]
S. Brittman, H. Gao, E. C. Garnett, and P. Yang, Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal, Nano Lett., 2011, 11(12): 5189
CrossRef ADS Google scholar
[36]
N. S. Lewis and D. G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. USA, 2006, 103(43): 15729
CrossRef ADS Google scholar
[37]
A. Listorti, J. Durrant, and J. Barber, Artificial photosynthesis: Solar to fuel, Nat. Mater., 2009, 8(12): 929
CrossRef ADS Google scholar
[38]
P. Yang, Semiconductor nanowire building blocks: From flux line pinning to artificial photosynthesis, MRS Bull., 2012, 37(09): 806
CrossRef ADS Google scholar
[39]
M. G.Walter, E. L.Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells, Chem. Rev., 2010, 110(11): 6446
CrossRef ADS Google scholar
[40]
A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238(5358): 37
CrossRef ADS Google scholar
[41]
A. J. Nozik, p-n photoelectrolysis cells, Appl. Phys. Lett., 1976, 29(3): 150
CrossRef ADS Google scholar
[42]
K. Ohashi, J. Mccann, and J. O. M. Bockris, Stable photoelectrochemical cells for the splitting of water, Nature, 1977, 266(5603): 610
CrossRef ADS Google scholar
[43]
A. Kudo, Z-scheme photocatalyst systems for water splitting under visible light irradiation, MRS Bull., 2011, 36(01): 32
CrossRef ADS Google scholar
[44]
S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes, Science, 2010, 327(5962): 185
CrossRef ADS Google scholar
[45]
S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, Photoelectrochemical hydrogen evolution using Si microwire arrays, J. Am. Chem. Soc., 2011, 133(5): 1216
CrossRef ADS Google scholar
[46]
A. Heller, E. Aharon-Shalom, W. A. Bonner, and B. Miller, Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst, J. Am. Chem. Soc., 1982, 104(25): 6942
CrossRef ADS Google scholar
[47]
Y. Hou, B. L. Abrams, P. C. K.Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Nöskov, and I. Chorkendorff, Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution, Nat. Mater., 2011, 10(6): 434
CrossRef ADS Google scholar
[48]
B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jøgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nøskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc., 2005, 127(15): 5308
CrossRef ADS Google scholar
[49]
M. Tomkiewicz and J. M. Woodall, Photoassisted electrolysis of water by visible irradiation of a p-type gallium phosphide electrode, Science, 1977, 196(4293): 990
CrossRef ADS Google scholar
[50]
J. Sun, C. Liu, and P. Yang, Surfactant-free, large-scale, solution–liquid–solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction, J. Am. Chem. Soc., 2011, 133(48): 19306
CrossRef ADS Google scholar
[51]
C. Liu, J. Sun, J. Tang, and P. Yang, Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactantfree solution synthesis, Nano Lett., 2012, 12(10): 5407
CrossRef ADS Google scholar
[52]
Y. J. Hwang, C. Hahn, B. Liu, and P. Yang, Photoelectrochemical properties of TiO2 nanowire arrays: A study of the dependence on length and atomic layer deposition coating, ACS Nano, 2012, 6(6): 5060
CrossRef ADS Google scholar
[53]
F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, Passivating surface states on water splitting hematite photoanodes with alumina overlayers, Chem. Sci., 2011, 2(4): 737
CrossRef ADS Google scholar
[54]
Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation, Nat. Mater., 2011, 10(7): 539
CrossRef ADS Google scholar
[55]
Y. J. Hwang, A. Boukai, and P. D. Yang, High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity, Nano Lett., 2009, 9(1): 410
CrossRef ADS Google scholar
[56]
T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, Complete composition tunability of InGaN nanowires using a combinatorial approach, Nat. Mater., 2007, 6(12): 951
CrossRef ADS Google scholar
[57]
Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties, Nano Lett., 2012, 12(3): 1678
CrossRef ADS Google scholar
[58]
C. Liu, Y. J. Hwang, H. E. Jeong, and P. Yang, Light-induced charge transport within a single asymmetric nanowire, Nano Lett., 2011, 11(9): 3755
CrossRef ADS Google scholar
[59]
P. Yang and J. M. Tarascon, Towards systems materials engineering, Nat. Mater., 2012, 11(7): 560
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(803 KB)

Accesses

Citations

Detail

Sections
Recommended

/