
Higgs boson searches at the Tevatron
Gavin J. Davies, on behalf of the CDF and D0 Collaborations
Front. Phys. ›› 2013, Vol. 8 ›› Issue (3) : 270-284.
Higgs boson searches at the Tevatron
This article reviews the Higgs searches at the Tevatron, as presented over the summer of 2012; both standard model (SM) and beyond the standard model (BSM) results are discussed as detailed (arXiv: 1207.0449; Phys. Rev. Lett., 2012, 109: 071804; Phys. Rev. D, 2012, 85: 032005).We discuss the combination of searches by the CDF and D0 Collaborations for the standard model Higgs boson in the mass range 100-200 GeV/c2 produced in the the gg→H, WH, ZH, , and vector boson fusion production modes, and decaying in the , H→W + W-, H→ZZ, H→τ+τ-, and H→γγ modes. The data, collected at the Fermilab Tevatron collider in collisions at = 1.96 TeV, correspond to integrated luminosities of up to 10 fb-1. In the absence of signal, we expect to exclude the regions 100<mH<120 GeV/c2 and 139<mH<184 GeV/c2. We exclude, at the 95% C.L., two regions: 100<mH<103 GeV/c2, and 147<mH<180 GeV/c2. We observe a signi.cant excess of events in the mass range between 115 and 140 GeV/c2. The local signi.cance corresponds to 3.0 standard deviations at mH =120 GeV/c2; the global signi.cance (incorporating the lookelsewhere e.ect) for such an excess anywhere in the full mass range investigated is approximately 2.5 standard deviations. Furthermore, we separately combine searches for , H→W + W-and H→γγ. We find that the excess is concentrated in the H→bbˉ channel, appearing in the searches over a broad range of mH; the maximum local significance of 3.3 standard deviations corresponds to a global significance of approximately 3.1 standard deviations. The observed signal strengths in all channels are consistent with the expectation for a standard model Higgs boson at mH = 125 GeV/c2. The production of neutral Higgs bosons in association with b-quarks can be significantly enhanced in various beyond the standard model scenarios, including Supersymmetry. The recent combination of such searches from the two collaborations is discussed.
[1] |
T. Aaltonen,
|
[2] |
T. Aaltonen,
CrossRef
ADS
Google scholar
|
[3] |
T. Aaltonen,
CrossRef
ADS
Google scholar
|
[4] |
S. L. Glashow, Nucl. Phys., 1961, 22(4): 579
CrossRef
ADS
Google scholar
|
[5] |
S. Weinberg, Phys. Rev. Lett., 1967, 19(21): 1264
CrossRef
ADS
Google scholar
|
[6] |
A. Salam, Elementary Particle Theory, edited by N. Svartholm, Stockholm: Almqvist & Wiksell, 1968: 367
|
[7] |
F. Englert and R. Brout, Phys. Rev. Lett., 1964, 13(9): 321
CrossRef
ADS
Google scholar
|
[8] |
P. W. Higgs, Phys. Rev. Lett., 1964, 13(16): 508
CrossRef
ADS
Google scholar
|
[9] |
G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett., 1964, 13(20): 585
CrossRef
ADS
Google scholar
|
[10] |
P. W. Higgs, Phys. Rev., 1966, 145(4): 1156
CrossRef
ADS
Google scholar
|
[11] |
T. Aaltonen,
|
[12] |
T. Aaltonen,
CrossRef
ADS
Google scholar
|
[13] |
The ALEPH, CDF, D0, DELPHI, L3, OPAL, and SLD Collaborations, the LEP ElectroweakWorking Group, the Tevatron Electroweak Working Group, and the SLD Electroweak and Heavy Flavor Working Groups, arXiv: 1012.2367v2, 2011
|
[14] |
The ALEPH, DELPHI, L3 and OPAL Collaborations, and the LEP Working Group for Higgs Boson Searches, Phys. Lett. B, 2003, 565: 61
|
[15] |
G. Aad,
CrossRef
ADS
Google scholar
|
[16] |
S. Chatrchyan,
CrossRef
ADS
Google scholar
|
[17] |
G. Aad,
|
[18] |
S. Chatrchyan,
CrossRef
ADS
Google scholar
|
[19] |
CDF and D0 use cylindrical coordinate systems with origins in the centers of the detectors, where θ and ϕ are the polar and azimuthal angles, respectively, and pseudora pidity is η= .ln tan(θ/2). The missing ET (
|
[20] |
T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys., 2006, 05: 026. We use pythia version 6.216 to generate the Higgs boson signals.
|
[21] |
H. L. Lai, J. Huston, S. Kuhlmann, J. Morfin, F. Olness, J. F. Owens, J. Pumplin, and W. K. Tung, Eur. Phys. J. C, 2000, 12(3): 375
CrossRef
ADS
Google scholar
|
[22] |
J. Pumplin,
|
[23] |
C. Anastasiou, R. Boughezal, and F. Petriello, J. High Energy Phys., 2009, 04: 003
|
[24] |
D. de Florian and M. Grazzini, Phys. Lett. B, 2009, 674(4-5): 291
CrossRef
ADS
Google scholar
|
[25] |
J. Baglio and A. Djouadi, J. High Energy Phys., 2010, 10: 064
|
[26] |
O. Brein, R. V. Harlander, M. Weisemann, and T. Zirke, Eur. Phys. J. C, 2012, 72(2): 1868
CrossRef
ADS
Google scholar
|
[27] |
P. Bolzoni, F. Maltoni, S. O. Moch, and M. Zaro, Phys. Rev. Lett., 2010, 105(1): 011801
CrossRef
ADS
Google scholar
|
[28] |
M. Ciccolini, A. Denner, and S. Dittmaier, Phys. Rev. Lett., 2007, 99(16): 161803
CrossRef
ADS
Google scholar
|
[29] |
M. Ciccolini, A. Denner, and S. Dittmaier, Phys. Rev. D, 2008, 77(1): 013002
CrossRef
ADS
Google scholar
|
[30] |
A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C, 2009, 63(2): 189
CrossRef
ADS
Google scholar
|
[31] |
S. Alekhin,
|
[32] |
M. Botje,
|
[33] |
C. Anastasiou, G. Dissertori, M. Grazzini, F. Stöckli, and B. R. Webber, J. High Energy Phys., 2009, 08: 099
|
[34] |
S. Dittmaier,
|
[35] |
A. Djouadi, J. Kalinowski, and M. Spira, Comput. Phys. Commun., 1998, 108(1): 56
CrossRef
ADS
Google scholar
|
[36] |
A. Bredenstein, A. Denner, S. Dittmaier, and M. M. Weber, Phys. Rev. D, 2006, 74(1): 013004
CrossRef
ADS
Google scholar
|
[37] |
A. Bredenstein, A. Denner, S. Dittmaier, A. Mück, and M. M. Weber, J. High Energy Phys., 2007, 02: 080
|
[38] |
G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Phys. Lett. B, 2003, 564(1-2): 65
CrossRef
ADS
Google scholar
|
[39] |
G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Nucl. Phys. B, 2006, 737(1-2): 73
CrossRef
ADS
Google scholar
|
[40] |
M. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. Polosa, J. High Energy Phys., 2003, 07: 001
|
[41] |
S. Frixione and B. R. Webber, J. High Energy Phys., 2002, 06: 029
|
[42] |
G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour, and B. R. Webber, J. High Energy Phys., 2001, 01: 010
|
[43] |
A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin, S. Shichanin, and A. Semenov, arXiv: hep-ph/9908288, 1999
|
[44] |
E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Ilyin, A. Kryukov, V. Edneral, V. Savrin, A. Semenov, and A. Sherstnev, Nucl. Instrum. Methods Phys. Res.: Sect. A, 2004, 534: 250
CrossRef
ADS
Google scholar
|
[45] |
E. E. Boos, V. E. Bunichev, L. V. Dudko, V. I. Savrin, and A. V. Sherstnev, Phys. At. Nucl., 2006, 69(8): 1317
CrossRef
ADS
Google scholar
|
[46] |
J. M. Campbell and R. K. Ellis, Phys. Rev. D, 1999, 60(11): 113006
CrossRef
ADS
Google scholar
|
[47] |
U. Langenfeld, S. Moch, and P. Uwer, Phys. Rev. D, 2009, 80(5): 054009
CrossRef
ADS
Google scholar
|
[48] |
N. Kidonakis, Phys. Rev. D, 2006, 74(11): 114012
CrossRef
ADS
Google scholar
|
[49] |
R. Hamberg, W. L. van Neerven, and T. Matsuura, Nucl. Phys. B, 1991, 359(2-3): 343; Erratum, Nucl. Phys. B, 2002, 644: 403
CrossRef
ADS
Google scholar
|
[50] |
A heavy-.avor jet is a reconstructed cluster of calorimeter energies associated with particles produced in the hadronization and decay of a bottom or charm quark.
|
[51] |
A B-tagged jet is one identified to have originated from the decay of a heavy .avor quark.
|
[52] |
D. Acosta,
CrossRef
ADS
Google scholar
|
[53] |
A. Abulencia,
CrossRef
ADS
Google scholar
|
[54] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[55] |
M. Abolins,
CrossRef
ADS
Google scholar
|
[56] |
R. Angstadt,
CrossRef
ADS
Google scholar
|
[57] |
For a recent review, see: P. C. Bhat, Ann. Rev. Nucl. Part. Sci., 2011, 61(1): 281. The specific details of each analysis’s MVA are described in the respective references.
CrossRef
ADS
Google scholar
|
[58] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[59] |
J. Freeman,
CrossRef
ADS
Google scholar
|
[60] |
D. Acosta,
CrossRef
ADS
Google scholar
|
[61] |
A. Abulencia,
CrossRef
ADS
Google scholar
|
[62] |
Statistics, in: K. Nakamura,
CrossRef
ADS
Google scholar
|
[63] |
T. Aaltonen,
CrossRef
ADS
Google scholar
|
[64] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[65] |
W. Fisher, FERMILAB-TM-2386-E, 2006
|
[66] |
T. Junk Nucl. Instrum. Methods Phys. Res.: Sect. A, 1999, 434: 435
CrossRef
ADS
Google scholar
|
[67] |
A. L. Read, J. Phys. G, 2002, 28(10): 2693
CrossRef
ADS
Google scholar
|
[68] |
I. W. Stewart and F. J. Tackmann, Phys. Rev. D, 2012, 85(3): 034011
CrossRef
ADS
Google scholar
|
[69] |
J. M. Campbell, R. K. Ellis, and C. Williams, Phys. Rev. D, 2010, 81(7): 074023
CrossRef
ADS
Google scholar
|
[70] |
L. Lyons, Annals of Applied Statistics, 2008, 2(3): 887
|
[71] |
O. J. Dunn, J. Am. Stat. Assoc., 1961, 56(293): 52
CrossRef
ADS
Google scholar
|
[72] |
A particular decay mode defined by an experimental signature as done here may be an admixture of several, though dominated by the one denoted.
|
[73] |
V. Barger, J. L. Hewett, and R. J. N. Phillips, Phys. Rev. D, 1990, 41(11): 3421
CrossRef
ADS
Google scholar
|
[74] |
H. P. Nilles, Phys. Rep., 1984, 110(1-2): 1
CrossRef
ADS
Google scholar
|
[75] |
H. E. Haber, and G. L. Kane, Phys. Rep., 1985, 117(2-4): 75
CrossRef
ADS
Google scholar
|
[76] |
The ALEPH Collaboration, The DELPHI Collaboration, The L3 Collaboration, and The OPAL Collaboration, Eur. Phys. J. C, 2006, 47: 547
|
[77] |
T. Affolder,
CrossRef
ADS
Google scholar
|
[78] |
A. Abulencia,
CrossRef
ADS
Google scholar
|
[79] |
T. Aaltonen,
CrossRef
ADS
Google scholar
|
[80] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[81] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[82] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[83] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[84] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[85] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[86] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[87] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[88] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[89] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[90] |
CMS Collaboration, Phys. Rev. Lett., 2011, 106: 231801
CrossRef
ADS
Google scholar
|
[91] |
ATLAS Collaboration, Phys. Lett. B, 2011, 705: 174
CrossRef
ADS
Google scholar
|
[92] |
CMS Collaboration, Phys. Lett. B, 2012, 713: 68
CrossRef
ADS
Google scholar
|
[93] |
S. Heinemeyer, W. Hollik, and G. Weiglein, Eur. Phys. J. C, 1999, 9: 343, FEYNHIGGS version 2.6.8 is used.
|
[94] |
S. Heinemeyer, W. Hollik, and G. Weiglein, Comput. Phys. Commun., 2000, 124(1): 76
CrossRef
ADS
Google scholar
|
[95] |
G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, and G. Weiglein, Eur. Phys. J. C, 2003, 28(1): 133
CrossRef
ADS
Google scholar
|
[96] |
M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, J. High Energy Phys., 2007, 02: 047
|
[97] |
L. Hofer, U. Nierste, and D. Shere, J. High Energy Phys., 2009, 10: 081
|
[98] |
D. Noth and M. Spira, Phys. Rev. Lett., 2008, 101(18): 181801
CrossRef
ADS
Google scholar
|
[99] |
MSUSY = 1 TeV, Xt = 2 TeV, M2 = 0.2 TeV, |μ| = 0.2 TeV, and mg = 0.8 TeV.
|
[100] |
M. Carena, S. Heinemeyer, C. E. M. Wagner, and G. Weiglein, Eur. Phys. J. C, 2006, 45(3): 797
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |