Higgs boson searches at the Tevatron
Gavin J. Davies, on behalf of the CDF and D0 Collaborations
Higgs boson searches at the Tevatron
This article reviews the Higgs searches at the Tevatron, as presented over the summer of 2012; both standard model (SM) and beyond the standard model (BSM) results are discussed as detailed (arXiv: 1207.0449; Phys. Rev. Lett., 2012, 109: 071804; Phys. Rev. D, 2012, 85: 032005).We discuss the combination of searches by the CDF and D0 Collaborations for the standard model Higgs boson in the mass range 100-200 GeV/c2 produced in the the gg→H, WH, ZH, , and vector boson fusion production modes, and decaying in the , H→W + W-, H→ZZ, H→τ+τ-, and H→γγ modes. The data, collected at the Fermilab Tevatron collider in collisions at = 1.96 TeV, correspond to integrated luminosities of up to 10 fb-1. In the absence of signal, we expect to exclude the regions 100<mH<120 GeV/c2 and 139<mH<184 GeV/c2. We exclude, at the 95% C.L., two regions: 100<mH<103 GeV/c2, and 147<mH<180 GeV/c2. We observe a signi.cant excess of events in the mass range between 115 and 140 GeV/c2. The local signi.cance corresponds to 3.0 standard deviations at mH =120 GeV/c2; the global signi.cance (incorporating the lookelsewhere e.ect) for such an excess anywhere in the full mass range investigated is approximately 2.5 standard deviations. Furthermore, we separately combine searches for , H→W + W-and H→γγ. We find that the excess is concentrated in the H→bbˉ channel, appearing in the searches over a broad range of mH; the maximum local significance of 3.3 standard deviations corresponds to a global significance of approximately 3.1 standard deviations. The observed signal strengths in all channels are consistent with the expectation for a standard model Higgs boson at mH = 125 GeV/c2. The production of neutral Higgs bosons in association with b-quarks can be significantly enhanced in various beyond the standard model scenarios, including Supersymmetry. The recent combination of such searches from the two collaborations is discussed.
[1] |
T. Aaltonen,
|
[2] |
T. Aaltonen,
CrossRef
ADS
Google scholar
|
[3] |
T. Aaltonen,
CrossRef
ADS
Google scholar
|
[4] |
S. L. Glashow, Nucl. Phys., 1961, 22(4): 579
CrossRef
ADS
Google scholar
|
[5] |
S. Weinberg, Phys. Rev. Lett., 1967, 19(21): 1264
CrossRef
ADS
Google scholar
|
[6] |
A. Salam, Elementary Particle Theory, edited by N. Svartholm, Stockholm: Almqvist & Wiksell, 1968: 367
|
[7] |
F. Englert and R. Brout, Phys. Rev. Lett., 1964, 13(9): 321
CrossRef
ADS
Google scholar
|
[8] |
P. W. Higgs, Phys. Rev. Lett., 1964, 13(16): 508
CrossRef
ADS
Google scholar
|
[9] |
G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett., 1964, 13(20): 585
CrossRef
ADS
Google scholar
|
[10] |
P. W. Higgs, Phys. Rev., 1966, 145(4): 1156
CrossRef
ADS
Google scholar
|
[11] |
T. Aaltonen,
|
[12] |
T. Aaltonen,
CrossRef
ADS
Google scholar
|
[13] |
The ALEPH, CDF, D0, DELPHI, L3, OPAL, and SLD Collaborations, the LEP ElectroweakWorking Group, the Tevatron Electroweak Working Group, and the SLD Electroweak and Heavy Flavor Working Groups, arXiv: 1012.2367v2, 2011
|
[14] |
The ALEPH, DELPHI, L3 and OPAL Collaborations, and the LEP Working Group for Higgs Boson Searches, Phys. Lett. B, 2003, 565: 61
|
[15] |
G. Aad,
CrossRef
ADS
Google scholar
|
[16] |
S. Chatrchyan,
CrossRef
ADS
Google scholar
|
[17] |
G. Aad,
|
[18] |
S. Chatrchyan,
CrossRef
ADS
Google scholar
|
[19] |
CDF and D0 use cylindrical coordinate systems with origins in the centers of the detectors, where θ and ϕ are the polar and azimuthal angles, respectively, and pseudora pidity is η= .ln tan(θ/2). The missing ET (
|
[20] |
T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys., 2006, 05: 026. We use pythia version 6.216 to generate the Higgs boson signals.
|
[21] |
H. L. Lai, J. Huston, S. Kuhlmann, J. Morfin, F. Olness, J. F. Owens, J. Pumplin, and W. K. Tung, Eur. Phys. J. C, 2000, 12(3): 375
CrossRef
ADS
Google scholar
|
[22] |
J. Pumplin,
|
[23] |
C. Anastasiou, R. Boughezal, and F. Petriello, J. High Energy Phys., 2009, 04: 003
|
[24] |
D. de Florian and M. Grazzini, Phys. Lett. B, 2009, 674(4-5): 291
CrossRef
ADS
Google scholar
|
[25] |
J. Baglio and A. Djouadi, J. High Energy Phys., 2010, 10: 064
|
[26] |
O. Brein, R. V. Harlander, M. Weisemann, and T. Zirke, Eur. Phys. J. C, 2012, 72(2): 1868
CrossRef
ADS
Google scholar
|
[27] |
P. Bolzoni, F. Maltoni, S. O. Moch, and M. Zaro, Phys. Rev. Lett., 2010, 105(1): 011801
CrossRef
ADS
Google scholar
|
[28] |
M. Ciccolini, A. Denner, and S. Dittmaier, Phys. Rev. Lett., 2007, 99(16): 161803
CrossRef
ADS
Google scholar
|
[29] |
M. Ciccolini, A. Denner, and S. Dittmaier, Phys. Rev. D, 2008, 77(1): 013002
CrossRef
ADS
Google scholar
|
[30] |
A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C, 2009, 63(2): 189
CrossRef
ADS
Google scholar
|
[31] |
S. Alekhin,
|
[32] |
M. Botje,
|
[33] |
C. Anastasiou, G. Dissertori, M. Grazzini, F. Stöckli, and B. R. Webber, J. High Energy Phys., 2009, 08: 099
|
[34] |
S. Dittmaier,
|
[35] |
A. Djouadi, J. Kalinowski, and M. Spira, Comput. Phys. Commun., 1998, 108(1): 56
CrossRef
ADS
Google scholar
|
[36] |
A. Bredenstein, A. Denner, S. Dittmaier, and M. M. Weber, Phys. Rev. D, 2006, 74(1): 013004
CrossRef
ADS
Google scholar
|
[37] |
A. Bredenstein, A. Denner, S. Dittmaier, A. Mück, and M. M. Weber, J. High Energy Phys., 2007, 02: 080
|
[38] |
G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Phys. Lett. B, 2003, 564(1-2): 65
CrossRef
ADS
Google scholar
|
[39] |
G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Nucl. Phys. B, 2006, 737(1-2): 73
CrossRef
ADS
Google scholar
|
[40] |
M. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. Polosa, J. High Energy Phys., 2003, 07: 001
|
[41] |
S. Frixione and B. R. Webber, J. High Energy Phys., 2002, 06: 029
|
[42] |
G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour, and B. R. Webber, J. High Energy Phys., 2001, 01: 010
|
[43] |
A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin, S. Shichanin, and A. Semenov, arXiv: hep-ph/9908288, 1999
|
[44] |
E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Ilyin, A. Kryukov, V. Edneral, V. Savrin, A. Semenov, and A. Sherstnev, Nucl. Instrum. Methods Phys. Res.: Sect. A, 2004, 534: 250
CrossRef
ADS
Google scholar
|
[45] |
E. E. Boos, V. E. Bunichev, L. V. Dudko, V. I. Savrin, and A. V. Sherstnev, Phys. At. Nucl., 2006, 69(8): 1317
CrossRef
ADS
Google scholar
|
[46] |
J. M. Campbell and R. K. Ellis, Phys. Rev. D, 1999, 60(11): 113006
CrossRef
ADS
Google scholar
|
[47] |
U. Langenfeld, S. Moch, and P. Uwer, Phys. Rev. D, 2009, 80(5): 054009
CrossRef
ADS
Google scholar
|
[48] |
N. Kidonakis, Phys. Rev. D, 2006, 74(11): 114012
CrossRef
ADS
Google scholar
|
[49] |
R. Hamberg, W. L. van Neerven, and T. Matsuura, Nucl. Phys. B, 1991, 359(2-3): 343; Erratum, Nucl. Phys. B, 2002, 644: 403
CrossRef
ADS
Google scholar
|
[50] |
A heavy-.avor jet is a reconstructed cluster of calorimeter energies associated with particles produced in the hadronization and decay of a bottom or charm quark.
|
[51] |
A B-tagged jet is one identified to have originated from the decay of a heavy .avor quark.
|
[52] |
D. Acosta,
CrossRef
ADS
Google scholar
|
[53] |
A. Abulencia,
CrossRef
ADS
Google scholar
|
[54] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[55] |
M. Abolins,
CrossRef
ADS
Google scholar
|
[56] |
R. Angstadt,
CrossRef
ADS
Google scholar
|
[57] |
For a recent review, see: P. C. Bhat, Ann. Rev. Nucl. Part. Sci., 2011, 61(1): 281. The specific details of each analysis’s MVA are described in the respective references.
CrossRef
ADS
Google scholar
|
[58] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[59] |
J. Freeman,
CrossRef
ADS
Google scholar
|
[60] |
D. Acosta,
CrossRef
ADS
Google scholar
|
[61] |
A. Abulencia,
CrossRef
ADS
Google scholar
|
[62] |
Statistics, in: K. Nakamura,
CrossRef
ADS
Google scholar
|
[63] |
T. Aaltonen,
CrossRef
ADS
Google scholar
|
[64] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[65] |
W. Fisher, FERMILAB-TM-2386-E, 2006
|
[66] |
T. Junk Nucl. Instrum. Methods Phys. Res.: Sect. A, 1999, 434: 435
CrossRef
ADS
Google scholar
|
[67] |
A. L. Read, J. Phys. G, 2002, 28(10): 2693
CrossRef
ADS
Google scholar
|
[68] |
I. W. Stewart and F. J. Tackmann, Phys. Rev. D, 2012, 85(3): 034011
CrossRef
ADS
Google scholar
|
[69] |
J. M. Campbell, R. K. Ellis, and C. Williams, Phys. Rev. D, 2010, 81(7): 074023
CrossRef
ADS
Google scholar
|
[70] |
L. Lyons, Annals of Applied Statistics, 2008, 2(3): 887
|
[71] |
O. J. Dunn, J. Am. Stat. Assoc., 1961, 56(293): 52
CrossRef
ADS
Google scholar
|
[72] |
A particular decay mode defined by an experimental signature as done here may be an admixture of several, though dominated by the one denoted.
|
[73] |
V. Barger, J. L. Hewett, and R. J. N. Phillips, Phys. Rev. D, 1990, 41(11): 3421
CrossRef
ADS
Google scholar
|
[74] |
H. P. Nilles, Phys. Rep., 1984, 110(1-2): 1
CrossRef
ADS
Google scholar
|
[75] |
H. E. Haber, and G. L. Kane, Phys. Rep., 1985, 117(2-4): 75
CrossRef
ADS
Google scholar
|
[76] |
The ALEPH Collaboration, The DELPHI Collaboration, The L3 Collaboration, and The OPAL Collaboration, Eur. Phys. J. C, 2006, 47: 547
|
[77] |
T. Affolder,
CrossRef
ADS
Google scholar
|
[78] |
A. Abulencia,
CrossRef
ADS
Google scholar
|
[79] |
T. Aaltonen,
CrossRef
ADS
Google scholar
|
[80] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[81] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[82] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[83] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[84] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[85] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[86] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[87] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[88] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[89] |
V. M. Abazov,
CrossRef
ADS
Google scholar
|
[90] |
CMS Collaboration, Phys. Rev. Lett., 2011, 106: 231801
CrossRef
ADS
Google scholar
|
[91] |
ATLAS Collaboration, Phys. Lett. B, 2011, 705: 174
CrossRef
ADS
Google scholar
|
[92] |
CMS Collaboration, Phys. Lett. B, 2012, 713: 68
CrossRef
ADS
Google scholar
|
[93] |
S. Heinemeyer, W. Hollik, and G. Weiglein, Eur. Phys. J. C, 1999, 9: 343, FEYNHIGGS version 2.6.8 is used.
|
[94] |
S. Heinemeyer, W. Hollik, and G. Weiglein, Comput. Phys. Commun., 2000, 124(1): 76
CrossRef
ADS
Google scholar
|
[95] |
G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, and G. Weiglein, Eur. Phys. J. C, 2003, 28(1): 133
CrossRef
ADS
Google scholar
|
[96] |
M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, J. High Energy Phys., 2007, 02: 047
|
[97] |
L. Hofer, U. Nierste, and D. Shere, J. High Energy Phys., 2009, 10: 081
|
[98] |
D. Noth and M. Spira, Phys. Rev. Lett., 2008, 101(18): 181801
CrossRef
ADS
Google scholar
|
[99] |
MSUSY = 1 TeV, Xt = 2 TeV, M2 = 0.2 TeV, |μ| = 0.2 TeV, and mg = 0.8 TeV.
|
[100] |
M. Carena, S. Heinemeyer, C. E. M. Wagner, and G. Weiglein, Eur. Phys. J. C, 2006, 45(3): 797
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |