Higgs boson searches at the Tevatron

Gavin J. Davies, on behalf of the CDF and D0 Collaborations

Front. Phys. ›› 2013, Vol. 8 ›› Issue (3) : 270 -284.

PDF (967KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (3) : 270 -284. DOI: 10.1007/s11467-013-0293-0
REVIEW ARTICLE

Higgs boson searches at the Tevatron

Author information +
History +
PDF (967KB)

Abstract

This article reviews the Higgs searches at the Tevatron, as presented over the summer of 2012; both standard model (SM) and beyond the standard model (BSM) results are discussed as detailed (arXiv: 1207.0449; Phys. Rev. Lett., 2012, 109: 071804; Phys. Rev. D, 2012, 85: 032005).We discuss the combination of searches by the CDF and D0 Collaborations for the standard model Higgs boson in the mass range 100-200 GeV/c2 produced in the the ggH, WH, ZH, tt ¯H, and vector boson fusion production modes, and decaying in the Hbb ¯, HW + W-, HZZ, Hτ+τ-, and H→γγ modes. The data, collected at the Fermilab Tevatron collider inpp ¯ collisions at s = 1.96 TeV, correspond to integrated luminosities of up to 10 fb-1. In the absence of signal, we expect to exclude the regions 100<mH<120 GeV/c2 and 139<mH<184 GeV/c2. We exclude, at the 95% C.L., two regions: 100<mH<103 GeV/c2, and 147<mH<180 GeV/c2. We observe a signi.cant excess of events in the mass range between 115 and 140 GeV/c2. The local signi.cance corresponds to 3.0 standard deviations at mH =120 GeV/c2; the global signi.cance (incorporating the lookelsewhere e.ect) for such an excess anywhere in the full mass range investigated is approximately 2.5 standard deviations. Furthermore, we separately combine searches for Hbb ¯, HW + W-and H→γγ. We find that the excess is concentrated in the Hbbˉ channel, appearing in the searches over a broad range of mH; the maximum local significance of 3.3 standard deviations corresponds to a global significance of approximately 3.1 standard deviations. The observed signal strengths in all channels are consistent with the expectation for a standard model Higgs boson at mH = 125 GeV/c2. The production of neutral Higgs bosons in association with b-quarks can be significantly enhanced in various beyond the standard model scenarios, including Supersymmetry. The recent combination of such searches from the two collaborations is discussed.

Keywords

Higgs / Tevatron

Cite this article

Download citation ▾
Gavin J. Davies, on behalf of the CDF and D0 Collaborations. Higgs boson searches at the Tevatron. Front. Phys., 2013, 8(3): 270-284 DOI:10.1007/s11467-013-0293-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Aaltonen, . [CDF and D0 Collaborations], arXiv: 1207.0449, 2012

[2]

T. Aaltonen, . [CDF and D0 Collaborations], Phys. Rev. Lett., 2012, 109: 071804

[3]

T. Aaltonen, . [CDF and D0 Collaborations], Phys. Rev. D, 2012, 85: 032005

[4]

S. L. Glashow, Nucl. Phys., 1961, 22(4): 579

[5]

S. Weinberg, Phys. Rev. Lett., 1967, 19(21): 1264

[6]

A. Salam, Elementary Particle Theory, edited by N. Svartholm, Stockholm: Almqvist & Wiksell, 1968: 367

[7]

F. Englert and R. Brout, Phys. Rev. Lett., 1964, 13(9): 321

[8]

P. W. Higgs, Phys. Rev. Lett., 1964, 13(16): 508

[9]

G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett., 1964, 13(20): 585

[10]

P. W. Higgs, Phys. Rev., 1966, 145(4): 1156

[11]

T. Aaltonen, . [CDF and D0 Collaborations], arXiv: 1204.0042, 2012

[12]

T. Aaltonen, . [CDF and D0 Collaborations], Phys. Rev. D, 2012, 86: 092003

[13]

The ALEPH, CDF, D0, DELPHI, L3, OPAL, and SLD Collaborations, the LEP ElectroweakWorking Group, the Tevatron Electroweak Working Group, and the SLD Electroweak and Heavy Flavor Working Groups, arXiv: 1012.2367v2, 2011

[14]

The ALEPH, DELPHI, L3 and OPAL Collaborations, and the LEP Working Group for Higgs Boson Searches, Phys. Lett. B, 2003, 565: 61

[15]

G. Aad, . [ATLAS Collaboration], Phys. Lett. B, 2012, 716: 1

[16]

S. Chatrchyan, . [CMS Collaboration], Phys. Lett. B, 2012, 716: 30

[17]

G. Aad, . [ATLAS Collaboration], arXiv: 1207.0210, 2012; submitted to Phys. Lett. B.

[18]

S. Chatrchyan, . [CMS Collaboration], Phys. Lett. B, 2012, 710: 284

[19]

CDF and D0 use cylindrical coordinate systems with origins in the centers of the detectors, where θ and ϕ are the polar and azimuthal angles, respectively, and pseudora pidity is η= .ln tan(θ/2). The missing ET (E⇀T) is defined by E⇀T = -ΣiETin^i, i = calorimeter tower number, where n^i is a unit vector perpendicular to the beam axis and pointing at the ith calorimeter tower. E⇀T is corrected for high-energy muons and also jet energy corrections.We define E⇀T = |E⇀T|.The transverse momentum pTis defined to be psin θ.

[20]

T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys., 2006, 05: 026. We use pythia version 6.216 to generate the Higgs boson signals.

[21]

H. L. Lai, J. Huston, S. Kuhlmann, J. Morfin, F. Olness, J. F. Owens, J. Pumplin, and W. K. Tung, Eur. Phys. J. C, 2000, 12(3): 375

[22]

J. Pumplin, , J. High Energy Phys., 2002, 07: 012

[23]

C. Anastasiou, R. Boughezal, and F. Petriello, J. High Energy Phys., 2009, 04: 003

[24]

D. de Florian and M. Grazzini, Phys. Lett. B, 2009, 674(4-5): 291

[25]

J. Baglio and A. Djouadi, J. High Energy Phys., 2010, 10: 064

[26]

O. Brein, R. V. Harlander, M. Weisemann, and T. Zirke, Eur. Phys. J. C, 2012, 72(2): 1868

[27]

P. Bolzoni, F. Maltoni, S. O. Moch, and M. Zaro, Phys. Rev. Lett., 2010, 105(1): 011801

[28]

M. Ciccolini, A. Denner, and S. Dittmaier, Phys. Rev. Lett., 2007, 99(16): 161803

[29]

M. Ciccolini, A. Denner, and S. Dittmaier, Phys. Rev. D, 2008, 77(1): 013002

[30]

A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C, 2009, 63(2): 189

[31]

S. Alekhin, . [PDF4LHC Working Group], arXiv: 1101.0536, 2011

[32]

M. Botje, . [PDF4LHC Working Group], arXiv: 1101.0538, 2011

[33]

C. Anastasiou, G. Dissertori, M. Grazzini, F. Stöckli, and B. R. Webber, J. High Energy Phys., 2009, 08: 099

[34]

S. Dittmaier, . [LHC Higgs Cross Section Working Group], arXiv: 1201.3084, 2012

[35]

A. Djouadi, J. Kalinowski, and M. Spira, Comput. Phys. Commun., 1998, 108(1): 56

[36]

A. Bredenstein, A. Denner, S. Dittmaier, and M. M. Weber, Phys. Rev. D, 2006, 74(1): 013004

[37]

A. Bredenstein, A. Denner, S. Dittmaier, A. Mück, and M. M. Weber, J. High Energy Phys., 2007, 02: 080

[38]

G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Phys. Lett. B, 2003, 564(1-2): 65

[39]

G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Nucl. Phys. B, 2006, 737(1-2): 73

[40]

M. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. Polosa, J. High Energy Phys., 2003, 07: 001

[41]

S. Frixione and B. R. Webber, J. High Energy Phys., 2002, 06: 029

[42]

G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour, and B. R. Webber, J. High Energy Phys., 2001, 01: 010

[43]

A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin, S. Shichanin, and A. Semenov, arXiv: hep-ph/9908288, 1999

[44]

E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Ilyin, A. Kryukov, V. Edneral, V. Savrin, A. Semenov, and A. Sherstnev, Nucl. Instrum. Methods Phys. Res.: Sect. A, 2004, 534: 250

[45]

E. E. Boos, V. E. Bunichev, L. V. Dudko, V. I. Savrin, and A. V. Sherstnev, Phys. At. Nucl., 2006, 69(8): 1317

[46]

J. M. Campbell and R. K. Ellis, Phys. Rev. D, 1999, 60(11): 113006

[47]

U. Langenfeld, S. Moch, and P. Uwer, Phys. Rev. D, 2009, 80(5): 054009

[48]

N. Kidonakis, Phys. Rev. D, 2006, 74(11): 114012

[49]

R. Hamberg, W. L. van Neerven, and T. Matsuura, Nucl. Phys. B, 1991, 359(2-3): 343; Erratum, Nucl. Phys. B, 2002, 644: 403

[50]

A heavy-.avor jet is a reconstructed cluster of calorimeter energies associated with particles produced in the hadronization and decay of a bottom or charm quark.

[51]

A B-tagged jet is one identified to have originated from the decay of a heavy .avor quark.

[52]

D. Acosta, . [CDF Collaboration], Phys. Rev. D, 2005, 71: 032001

[53]

A. Abulencia, . [CDF Collaboration], J. Phys. G, 2007, 34: 2457

[54]

V. M. Abazov, . [D0 Collaboration], Nucl. Instrum. Methods Phys. Res.: Sect. A, 2006, 565: 463

[55]

M. Abolins, ., Nucl. Instrum. Methods Phys. Res.: Sect. A, 2008, 584: 75

[56]

R. Angstadt, ., Nucl. Instrum. Methods Phys. Res.: Sect. A, 2010, 622: 298

[57]

For a recent review, see: P. C. Bhat, Ann. Rev. Nucl. Part. Sci., 2011, 61(1): 281. The specific details of each analysis’s MVA are described in the respective references.

[58]

V. M. Abazov, , Nucl. Instrum. Methods Phys. Res.: Sect. A, 2010, 620: 490

[59]

J. Freeman, . Nucl. Instrum. Methods Phys. Res.: Sect. A, 2013, 697: 64

[60]

D. Acosta, . [CDF Collaboration], Phys. Rev. D, 2005, 71: 052003

[61]

A. Abulencia, . [CDF Collaboration], Phys. Rev. D, 2006, 74: 072006

[62]

Statistics, in: K. Nakamura, . [Particle Data Group], J. Phys. G, 2010, 37: 075021.

[63]

T. Aaltonen, . [CDF Collaboration], Phys. Rev. Lett., 2012, 109(11): 111802

[64]

V. M. Abazov, . [D0 Collaboration], Phys. Rev. Lett., 2012, 109(12): 121802

[65]

W. Fisher, FERMILAB-TM-2386-E, 2006

[66]

T. Junk Nucl. Instrum. Methods Phys. Res.: Sect. A, 1999, 434: 435

[67]

A. L. Read, J. Phys. G, 2002, 28(10): 2693

[68]

I. W. Stewart and F. J. Tackmann, Phys. Rev. D, 2012, 85(3): 034011

[69]

J. M. Campbell, R. K. Ellis, and C. Williams, Phys. Rev. D, 2010, 81(7): 074023

[70]

L. Lyons, Annals of Applied Statistics, 2008, 2(3): 887

[71]

O. J. Dunn, J. Am. Stat. Assoc., 1961, 56(293): 52

[72]

A particular decay mode defined by an experimental signature as done here may be an admixture of several, though dominated by the one denoted.

[73]

V. Barger, J. L. Hewett, and R. J. N. Phillips, Phys. Rev. D, 1990, 41(11): 3421

[74]

H. P. Nilles, Phys. Rep., 1984, 110(1-2): 1

[75]

H. E. Haber, and G. L. Kane, Phys. Rep., 1985, 117(2-4): 75

[76]

The ALEPH Collaboration, The DELPHI Collaboration, The L3 Collaboration, and The OPAL Collaboration, Eur. Phys. J. C, 2006, 47: 547

[77]

T. Affolder, . [CDF Collaboration], Phys. Rev. Lett., 2001, 86: 4472

[78]

A. Abulencia, . [CDF Collaboration], Phys. Rev. Lett., 2006, 96: 011802

[79]

T. Aaltonen, . [CDF Collaboration], Phys. Rev. D, 2012, 85: 032005

[80]

V. M. Abazov, . [D0 Collaboration], Phys. Rev. Lett., 2005, 95(15): 151801

[81]

V. M. Abazov, . [D0 Collaboration], Phys. Rev. Lett., 2006, 97(12): 121802

[82]

V. M. Abazov, . [D0 Collaboration], Phys. Rev. Lett., 2008, 101(7): 071804

[83]

V. M. Abazov, . [D0 Collaboration], Phys. Rev. Lett., 2008, 101(22): 221802

[84]

V. M. Abazov, . [D0 Collaboration], Phys. Rev. Lett., 2009, 102(5): 051804

[85]

V. M. Abazov, . [D0 Collaboration], Phys. Rev. Lett., 2010, 104(15): 151801

[86]

V. M. Abazov, . [D0 Collaboration], Phys. Lett. B, 2011, 698: 97

[87]

V. M. Abazov, . [D0 Collaboration], Phys. Rev. Lett., 2011, 107(12): 121801

[88]

V. M. Abazov, . [D0 Collaboration], Phys. Lett. B, 2012, 707: 323

[89]

V. M. Abazov, . [D0 Collaboration], Phys. Lett. B, 2012, 710: 569

[90]

CMS Collaboration, Phys. Rev. Lett., 2011, 106: 231801

[91]

ATLAS Collaboration, Phys. Lett. B, 2011, 705: 174

[92]

CMS Collaboration, Phys. Lett. B, 2012, 713: 68

[93]

S. Heinemeyer, W. Hollik, and G. Weiglein, Eur. Phys. J. C, 1999, 9: 343, FEYNHIGGS version 2.6.8 is used.

[94]

S. Heinemeyer, W. Hollik, and G. Weiglein, Comput. Phys. Commun., 2000, 124(1): 76

[95]

G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, and G. Weiglein, Eur. Phys. J. C, 2003, 28(1): 133

[96]

M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, J. High Energy Phys., 2007, 02: 047

[97]

L. Hofer, U. Nierste, and D. Shere, J. High Energy Phys., 2009, 10: 081

[98]

D. Noth and M. Spira, Phys. Rev. Lett., 2008, 101(18): 181801

[99]

MSUSY = 1 TeV, Xt = 2 TeV, M2 = 0.2 TeV, |μ| = 0.2 TeV, and mg = 0.8 TeV.

[100]

M. Carena, S. Heinemeyer, C. E. M. Wagner, and G. Weiglein, Eur. Phys. J. C, 2006, 45(3): 797

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (967KB)

642

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/