Lattice Boltzmann model for combustion and detonation

Bo Yan, Ai-Guo Xu, Guang-Cai Zhang, Yang-Jun Ying, Hua Li

PDF(862 KB)
PDF(862 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (1) : 94-110. DOI: 10.1007/s11467-013-0286-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Lattice Boltzmann model for combustion and detonation

Author information +
History +

Abstract

In this paper we present a lattice Boltzmann model for combustion and detonation. In this model the fluid behavior is described by a finite-difference lattice Boltzmann model by Gan et al. [Physica A, 2008, 387: 1721]. The chemical reaction is described by the Lee-Tarver model [Phys. Fluids, 1980, 23: 2362]. The reaction heat is naturally coupled with the flow behavior. Due to the separation of time scales in the chemical and thermodynamic processes, a key technique for a successful simulation is to use the operator-splitting scheme. The new model is verified and validated by well-known benchmark tests. As a specific application of the new model, we studied the simple steady detonation phenomenon. To show the merit of LB model over the traditional ones, we focus on the reaction zone to study the non-equilibrium effects. It is interesting to find that, at the von Neumann peak, the system is nearly in its thermodynamic equilibrium. At the two sides of the von Neumann peak, the system deviates from its equilibrium in opposite directions. In the front of von Neumann peak, due to the strong compression from the reaction product behind the von Neumann peak, the system experiences a sudden deviation from thermodynamic equilibrium. Behind the von Neumann peak, the release of chemical energy results in thermal expansion of the matter within the reaction zone, which drives the system to deviate the thermodynamic equilibrium in the opposite direction. From the deviation from thermodynamic equilibrium, Δm*, defined in this paper, one can understand more on the macroscopic effects of the system due to the deviation from its thermodynamic equilibrium.

Keywords

lattice Boltzmann method / Lee-Tarver model / viscous detonation / deviation from equilibrium

Cite this article

Download citation ▾
Bo Yan, Ai-Guo Xu, Guang-Cai Zhang, Yang-Jun Ying, Hua Li. Lattice Boltzmann model for combustion and detonation. Front. Phys., 2013, 8(1): 94‒110 https://doi.org/10.1007/s11467-013-0286-z

References

[1]
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, New York: Oxford University Press, 2001
[2]
R. Benzi, S. Succi, and M. Vergassola, Phys. Rep., 1992, 222(3): 145
CrossRef ADS Google scholar
[3]
A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E, 2003, 67(5): 056105
CrossRef ADS Google scholar
[4]
A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E, 2006, 74(1): 011505
CrossRef ADS Google scholar
[5]
A. Xu, G. Gonnella, and A. Lamura, Physica A, 2004, 331: 10
CrossRef ADS Google scholar
[6]
A. Xu, G. Gonnella, and A. Lamura, Physica A, 2004, 334: 750
CrossRef ADS Google scholar
[7]
A. Xu, G. Gonnella, and A. Lamura, Physica A, 2006, 362: 42
CrossRef ADS Google scholar
[8]
C. Aidun and J. Clausen, Annu. Rev. Fluid Mech., 2010, 42(1): 439
CrossRef ADS Google scholar
[9]
S. Chen, H. Chen, D. Martnez, and W. Matthaeus, Phys. Rev. Lett., 1991, 67(27): 3776
CrossRef ADS Google scholar
[10]
G. Vahala, B. Keating, M. Soe, J. Yepezand, and L. Vahala, Commun. Comput. Phys., 2008, 4: 624
[11]
A. J. C. Ladd, J. Fluid Mech., 1994, 271: 285
CrossRef ADS Google scholar
[12]
A. J. C. Ladd, J. Fluid Mech., 1994, 271: 311
CrossRef ADS Google scholar
[13]
S. Succi, E. Foti, and F. Higuera, Europhys. Lett., 1989, 10(5): 433
CrossRef ADS Google scholar
[14]
Y. Xu, H. Li, S. Guo, and G. Huang, Commun. Theor. Phys., 2004, 41: 949
[15]
Y. Xu, Y. Liu, and G. Huang, Chin. Phys. Lett., 2004, 21: 2454
CrossRef ADS Google scholar
[16]
Y. Xu, Y. Liu, X. Yang, and F. Wu, Commun. Theor. Phys., 2008, 49: 1319
CrossRef ADS Google scholar
[17]
M. Watari and M. Tsutahara, Phys. Rev. E, 2003, 67(3): 036306
CrossRef ADS Google scholar
[18]
A. Xu, Europhys. Lett., 2005, 69(2): 214
CrossRef ADS Google scholar
[19]
A. Xu, Phys. Rev. E, 2005, 71(6): 066706
CrossRef ADS Google scholar
[20]
Y. Gan, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2008, 50(2): 201
CrossRef ADS Google scholar
[21]
Y. Gan, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2011, 56(3): 490
CrossRef ADS Google scholar
[22]
Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E, 2011, 83(5): 056704
CrossRef ADS Google scholar
[23]
Q. Li, Y. L. He, Y. Wang, and W. Q. Tao, Phys. Rev. E, 2007, 76(5): 056705
CrossRef ADS Google scholar
[24]
Q. Li, Y. L. He, Y. Wang, and G. H. Tang, Phys. Lett. A, 2009, 373(25): 2101
CrossRef ADS Google scholar
[25]
Y. Wang, Y. L. He, T. Zhao, G. H. Tang, and W. Q. Tao, Int. J. Mod. Phys. C, 2007, 18(12): 1961
CrossRef ADS Google scholar
[26]
M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev. Lett., 1995, 75(5): 830
CrossRef ADS Google scholar
[27]
X. He, S. Chen, and R. Zhang, J. Comput. Phys., 1999, 152(2): 642
CrossRef ADS Google scholar
[28]
M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, and F. Toschi, Phys. Rev. E, 2007, 75(2): 026702
CrossRef ADS Google scholar
[29]
V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Phys. Rev. E, 2004, 70(4): 046702
CrossRef ADS Google scholar
[30]
A. Cristea, G. Gonnella, A. Lamura, and V. Sofonea, Commun. Comput. Phys., 2010, 7: 350
[31]
Y. Gan, A. Xu, G. Zhang, and Y. Li, Physica A, 2008, 387(8-9): 1721
[32]
Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phys. Rev. E, 2011, 84(4): 046715
CrossRef ADS Google scholar
[33]
Y. Gan, A. Xu, G. Zhang, P. Zhang, and Y. Li, Europhys. Lett., 2012, 97(4): 44002
CrossRef ADS Google scholar
[34]
Y. Gan, A. Xu, G. Zhang, and Y. Li, Front. Phys., 2012, 7(4): 481
CrossRef ADS Google scholar
[35]
A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Front. Phys., 2012, 7(5): 582
CrossRef ADS Google scholar
[36]
X. F. Pan, A. Xu, G. Zhang, and S. Jiang, Int. J. Mod. Phys. C, 2007, 18(11): 1747
CrossRef ADS Google scholar
[37]
F. Chen, A. Xu, G. Zhang, Y. Gan, T. Cheng, and Y. Li, Commun. Theor. Phys., 2009, 52: 681
CrossRef ADS Google scholar
[38]
F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2010, 54(6): 1121
CrossRef ADS Google scholar
[39]
F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2011, 55(2): 325
CrossRef ADS Google scholar
[40]
A. N. Gorban and D. Packwood, Phys. Rev. E, 2012, 86(2): 025701(R)
CrossRef ADS Google scholar
[41]
F. J. Higuera, S. Succi, and R. Benzi, Europhys. Lett., 1989, 9(4): 345
CrossRef ADS Google scholar
[42]
P. Lallemand and L. S. Luo, Phys. Rev. E, 2000, 61(6): 6546
CrossRef ADS Google scholar
[43]
P. Lallemand and L. S. Luo, Phys. Rev. E, 2003, 68(3): 036706
CrossRef ADS Google scholar
[44]
F. Chen, A. Xu, G. Zhang, and Y. Li, Phys. Lett. A, 2011, 375(21): 2129
CrossRef ADS Google scholar
[45]
F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Europhys. Lett., 2010, 90(5): 54003
CrossRef ADS Google scholar
[46]
F. Tosi, S. Ubertini, S. Succi, H. Chen, and I. V. Karlin, Math. Comput. Simul., 2006, 72(2-6): 227
[47]
S. Ansumali and I. V. Karlin, J. Stat. Phys., 2002, 107(1/2): 291
CrossRef ADS Google scholar
[48]
S. S. Chikatamarla and I. V. Karlin, Phys. Rev. Lett., 2006, 97(19): 190601
CrossRef ADS Google scholar
[49]
S. S. Chikatamarla and I. V. Karlin, Phys. Rev. E, 2009, 79(4): 046701
CrossRef ADS Google scholar
[50]
Y. Li, R. Shock, R. Zhang, and H. Chen, J. Fluid Mech., 2004, 519: 273
CrossRef ADS Google scholar
[51]
Y. Gan, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2011, 56(3): 490
CrossRef ADS Google scholar
[52]
F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2011, 56(2): 333
CrossRef ADS Google scholar
[53]
W. Fickett and W. C. Davis, Detonation,Theory and Experiment, New York: Dover Publications, Inc. Mineola, 1979
[54]
M. Berthelot, P. Vielle, and C. R. Hebd, Sceances Acad. Sci., 1881, 93: 18
[55]
M. Berthelot, P. Vielle, and C. R. Hebd, Sceances Acad. Sci., 1882, 94: 149
[56]
E. Mallard, H. Le Chatelier, and C. R. Hebd, Sceances Acad. Sci., 1881, 93: 145
[57]
D. L. Chapmann, Philos. Mag., 1899, 47: 90
[58]
E. Jouguet, J. Math. Pures Appl., 1905, 1: 347
[59]
Ya. B. Zeldovich and S. A. Kompaneets, Zh. Eksp. Teor. Fiz., 1940, 10: 542
[60]
J. Von Neumann, Theory of Detonation Waves, New York: Macmillan, 1942
[61]
W. Doering, Ann. Phys., 1943, 43: 421
CrossRef ADS Google scholar
[62]
C. L. Mader, Numerical Modeling of Explosives and Propellants, New York: CRC Press, 2008
[63]
C. Wang, X. Zhang, C. W. Shu, and J. Ning, J. Comput. Phys., 2012, 231(2): 653
CrossRef ADS Google scholar
[64]
S. Tan, C. Wang, C. W. Shu, and J. Ning, J. Comput. Phys., 2012, 231(6): 2510
CrossRef ADS Google scholar
[65]
S. Karni, J. Comput. Phys., 1994, 112(1): 31
CrossRef ADS Google scholar
[66]
A. Marquina and P. Mulet, J. Comput. Phys., 2003, 185(1): 120
CrossRef ADS Google scholar
[67]
J. J. Quirk and S. Karni, J. Fluid Mech., 1996, 318: 129
CrossRef ADS Google scholar
[68]
K. M. Shyue, J. Comput. Phys., 1998, 142(1): 208
CrossRef ADS Google scholar
[69]
R. Loubre, P. H. Maire, M. Shashkov, J. Breil, and S. Galera, J. Comput. Phys., 2010, 229: 4724
CrossRef ADS Google scholar
[70]
S. Galera, P. H. Maire, and J. Breil, J. Comput. Phys., 2010, 229(16): 5755
CrossRef ADS Google scholar
[71]
S. Ssher and R. P. Fedkiw, J. Comput. Phys., 2001, 169: 463
CrossRef ADS Google scholar
[72]
M. Sussman, P. Smereka, and S. Osher, J. Comput. Phys., 1994, 114(1): 146
CrossRef ADS Google scholar
[73]
R. Scardovelli and S. Zaleski, Annu. Rev. Fluid Mech., 1999, 31(1): 567
CrossRef ADS Google scholar
[74]
G. Tryggvason, B. Bunner, A. Esmaeeli, and D. Juric, J. Comput. Phys., 2001, 169: 708
CrossRef ADS Google scholar
[75]
J. Glimm, J. W. Grove, X. L. Li, and D. C. Tan, SIAM J. Sci. Comput., 2000, 21(6): 2240
CrossRef ADS Google scholar
[76]
D. K. Mao, J. Comput. Phys., 2007, 226(2): 1550
CrossRef ADS Google scholar
[77]
J. Sun and J. Zhu, Theory of Detonation Physics, Beijing: National Defense Industry Press, 1995(in Chinese)
[78]
S. Succi, G. Bella, and F. Papetti, J. Sci. Comput., 1997, 12(4): 395
CrossRef ADS Google scholar
[79]
O. Filippova and D. Hanel, J. Comput. Phys., 2000, 158(2): 139
CrossRef ADS Google scholar
[80]
O. Filippova and D. Hanel, Comput. Phys. Commun., 2000, 129(1-3): 267
[81]
K. Yamamoto, X. He, and G. D. Doolen, J. Stat. Phys., 2002, 107(1/2): 367
CrossRef ADS Google scholar
[82]
T. Lee, C. L. Lin, and L. D. Chen, J. Comput. Phys., 2006, 215(1): 133
CrossRef ADS Google scholar
[83]
E. L. Lee and C. M. Tarver, Phys. Fluids, 1980, 23(12): 2362
CrossRef ADS Google scholar
[84]
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, New York: Interscienc Publishers Inc., 1948
[85]
W. W. Wood, Phys. Fluids, 1963, 6(8): 1081
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(862 KB)

Accesses

Citations

Detail

Sections
Recommended

/