Lattice Boltzmann model for combustion and detonation
Bo Yan, Ai-Guo Xu, Guang-Cai Zhang, Yang-Jun Ying, Hua Li
Lattice Boltzmann model for combustion and detonation
In this paper we present a lattice Boltzmann model for combustion and detonation. In this model the fluid behavior is described by a finite-difference lattice Boltzmann model by Gan et al. [Physica A, 2008, 387: 1721]. The chemical reaction is described by the Lee-Tarver model [Phys. Fluids, 1980, 23: 2362]. The reaction heat is naturally coupled with the flow behavior. Due to the separation of time scales in the chemical and thermodynamic processes, a key technique for a successful simulation is to use the operator-splitting scheme. The new model is verified and validated by well-known benchmark tests. As a specific application of the new model, we studied the simple steady detonation phenomenon. To show the merit of LB model over the traditional ones, we focus on the reaction zone to study the non-equilibrium effects. It is interesting to find that, at the von Neumann peak, the system is nearly in its thermodynamic equilibrium. At the two sides of the von Neumann peak, the system deviates from its equilibrium in opposite directions. In the front of von Neumann peak, due to the strong compression from the reaction product behind the von Neumann peak, the system experiences a sudden deviation from thermodynamic equilibrium. Behind the von Neumann peak, the release of chemical energy results in thermal expansion of the matter within the reaction zone, which drives the system to deviate the thermodynamic equilibrium in the opposite direction. From the deviation from thermodynamic equilibrium, , defined in this paper, one can understand more on the macroscopic effects of the system due to the deviation from its thermodynamic equilibrium.
lattice Boltzmann method / Lee-Tarver model / viscous detonation / deviation from equilibrium
[1] |
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, New York: Oxford University Press, 2001
|
[2] |
R. Benzi, S. Succi, and M. Vergassola, Phys. Rep., 1992, 222(3): 145
CrossRef
ADS
Google scholar
|
[3] |
A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E, 2003, 67(5): 056105
CrossRef
ADS
Google scholar
|
[4] |
A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E, 2006, 74(1): 011505
CrossRef
ADS
Google scholar
|
[5] |
A. Xu, G. Gonnella, and A. Lamura, Physica A, 2004, 331: 10
CrossRef
ADS
Google scholar
|
[6] |
A. Xu, G. Gonnella, and A. Lamura, Physica A, 2004, 334: 750
CrossRef
ADS
Google scholar
|
[7] |
A. Xu, G. Gonnella, and A. Lamura, Physica A, 2006, 362: 42
CrossRef
ADS
Google scholar
|
[8] |
C. Aidun and J. Clausen, Annu. Rev. Fluid Mech., 2010, 42(1): 439
CrossRef
ADS
Google scholar
|
[9] |
S. Chen, H. Chen, D. Martnez, and W. Matthaeus, Phys. Rev. Lett., 1991, 67(27): 3776
CrossRef
ADS
Google scholar
|
[10] |
G. Vahala, B. Keating, M. Soe, J. Yepezand, and L. Vahala, Commun. Comput. Phys., 2008, 4: 624
|
[11] |
A. J. C. Ladd, J. Fluid Mech., 1994, 271: 285
CrossRef
ADS
Google scholar
|
[12] |
A. J. C. Ladd, J. Fluid Mech., 1994, 271: 311
CrossRef
ADS
Google scholar
|
[13] |
S. Succi, E. Foti, and F. Higuera, Europhys. Lett., 1989, 10(5): 433
CrossRef
ADS
Google scholar
|
[14] |
Y. Xu, H. Li, S. Guo, and G. Huang, Commun. Theor. Phys., 2004, 41: 949
|
[15] |
Y. Xu, Y. Liu, and G. Huang, Chin. Phys. Lett., 2004, 21: 2454
CrossRef
ADS
Google scholar
|
[16] |
Y. Xu, Y. Liu, X. Yang, and F. Wu, Commun. Theor. Phys., 2008, 49: 1319
CrossRef
ADS
Google scholar
|
[17] |
M. Watari and M. Tsutahara, Phys. Rev. E, 2003, 67(3): 036306
CrossRef
ADS
Google scholar
|
[18] |
A. Xu, Europhys. Lett., 2005, 69(2): 214
CrossRef
ADS
Google scholar
|
[19] |
A. Xu, Phys. Rev. E, 2005, 71(6): 066706
CrossRef
ADS
Google scholar
|
[20] |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2008, 50(2): 201
CrossRef
ADS
Google scholar
|
[21] |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2011, 56(3): 490
CrossRef
ADS
Google scholar
|
[22] |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E, 2011, 83(5): 056704
CrossRef
ADS
Google scholar
|
[23] |
Q. Li, Y. L. He, Y. Wang, and W. Q. Tao, Phys. Rev. E, 2007, 76(5): 056705
CrossRef
ADS
Google scholar
|
[24] |
Q. Li, Y. L. He, Y. Wang, and G. H. Tang, Phys. Lett. A, 2009, 373(25): 2101
CrossRef
ADS
Google scholar
|
[25] |
Y. Wang, Y. L. He, T. Zhao, G. H. Tang, and W. Q. Tao, Int. J. Mod. Phys. C, 2007, 18(12): 1961
CrossRef
ADS
Google scholar
|
[26] |
M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev. Lett., 1995, 75(5): 830
CrossRef
ADS
Google scholar
|
[27] |
X. He, S. Chen, and R. Zhang, J. Comput. Phys., 1999, 152(2): 642
CrossRef
ADS
Google scholar
|
[28] |
M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, and F. Toschi, Phys. Rev. E, 2007, 75(2): 026702
CrossRef
ADS
Google scholar
|
[29] |
V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Phys. Rev. E, 2004, 70(4): 046702
CrossRef
ADS
Google scholar
|
[30] |
A. Cristea, G. Gonnella, A. Lamura, and V. Sofonea, Commun. Comput. Phys., 2010, 7: 350
|
[31] |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Physica A, 2008, 387(8-9): 1721
|
[32] |
Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phys. Rev. E, 2011, 84(4): 046715
CrossRef
ADS
Google scholar
|
[33] |
Y. Gan, A. Xu, G. Zhang, P. Zhang, and Y. Li, Europhys. Lett., 2012, 97(4): 44002
CrossRef
ADS
Google scholar
|
[34] |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Front. Phys., 2012, 7(4): 481
CrossRef
ADS
Google scholar
|
[35] |
A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Front. Phys., 2012, 7(5): 582
CrossRef
ADS
Google scholar
|
[36] |
X. F. Pan, A. Xu, G. Zhang, and S. Jiang, Int. J. Mod. Phys. C, 2007, 18(11): 1747
CrossRef
ADS
Google scholar
|
[37] |
F. Chen, A. Xu, G. Zhang, Y. Gan, T. Cheng, and Y. Li, Commun. Theor. Phys., 2009, 52: 681
CrossRef
ADS
Google scholar
|
[38] |
F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2010, 54(6): 1121
CrossRef
ADS
Google scholar
|
[39] |
F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2011, 55(2): 325
CrossRef
ADS
Google scholar
|
[40] |
A. N. Gorban and D. Packwood, Phys. Rev. E, 2012, 86(2): 025701(R)
CrossRef
ADS
Google scholar
|
[41] |
F. J. Higuera, S. Succi, and R. Benzi, Europhys. Lett., 1989, 9(4): 345
CrossRef
ADS
Google scholar
|
[42] |
P. Lallemand and L. S. Luo, Phys. Rev. E, 2000, 61(6): 6546
CrossRef
ADS
Google scholar
|
[43] |
P. Lallemand and L. S. Luo, Phys. Rev. E, 2003, 68(3): 036706
CrossRef
ADS
Google scholar
|
[44] |
F. Chen, A. Xu, G. Zhang, and Y. Li, Phys. Lett. A, 2011, 375(21): 2129
CrossRef
ADS
Google scholar
|
[45] |
F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Europhys. Lett., 2010, 90(5): 54003
CrossRef
ADS
Google scholar
|
[46] |
F. Tosi, S. Ubertini, S. Succi, H. Chen, and I. V. Karlin, Math. Comput. Simul., 2006, 72(2-6): 227
|
[47] |
S. Ansumali and I. V. Karlin, J. Stat. Phys., 2002, 107(1/2): 291
CrossRef
ADS
Google scholar
|
[48] |
S. S. Chikatamarla and I. V. Karlin, Phys. Rev. Lett., 2006, 97(19): 190601
CrossRef
ADS
Google scholar
|
[49] |
S. S. Chikatamarla and I. V. Karlin, Phys. Rev. E, 2009, 79(4): 046701
CrossRef
ADS
Google scholar
|
[50] |
Y. Li, R. Shock, R. Zhang, and H. Chen, J. Fluid Mech., 2004, 519: 273
CrossRef
ADS
Google scholar
|
[51] |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2011, 56(3): 490
CrossRef
ADS
Google scholar
|
[52] |
F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2011, 56(2): 333
CrossRef
ADS
Google scholar
|
[53] |
W. Fickett and W. C. Davis, Detonation,Theory and Experiment, New York: Dover Publications, Inc. Mineola, 1979
|
[54] |
M. Berthelot, P. Vielle, and C. R. Hebd, Sceances Acad. Sci., 1881, 93: 18
|
[55] |
M. Berthelot, P. Vielle, and C. R. Hebd, Sceances Acad. Sci., 1882, 94: 149
|
[56] |
E. Mallard, H. Le Chatelier, and C. R. Hebd, Sceances Acad. Sci., 1881, 93: 145
|
[57] |
D. L. Chapmann, Philos. Mag., 1899, 47: 90
|
[58] |
E. Jouguet, J. Math. Pures Appl., 1905, 1: 347
|
[59] |
Ya. B. Zeldovich and S. A. Kompaneets, Zh. Eksp. Teor. Fiz., 1940, 10: 542
|
[60] |
J. Von Neumann, Theory of Detonation Waves, New York: Macmillan, 1942
|
[61] |
W. Doering, Ann. Phys., 1943, 43: 421
CrossRef
ADS
Google scholar
|
[62] |
C. L. Mader, Numerical Modeling of Explosives and Propellants, New York: CRC Press, 2008
|
[63] |
C. Wang, X. Zhang, C. W. Shu, and J. Ning, J. Comput. Phys., 2012, 231(2): 653
CrossRef
ADS
Google scholar
|
[64] |
S. Tan, C. Wang, C. W. Shu, and J. Ning, J. Comput. Phys., 2012, 231(6): 2510
CrossRef
ADS
Google scholar
|
[65] |
S. Karni, J. Comput. Phys., 1994, 112(1): 31
CrossRef
ADS
Google scholar
|
[66] |
A. Marquina and P. Mulet, J. Comput. Phys., 2003, 185(1): 120
CrossRef
ADS
Google scholar
|
[67] |
J. J. Quirk and S. Karni, J. Fluid Mech., 1996, 318: 129
CrossRef
ADS
Google scholar
|
[68] |
K. M. Shyue, J. Comput. Phys., 1998, 142(1): 208
CrossRef
ADS
Google scholar
|
[69] |
R. Loubre, P. H. Maire, M. Shashkov, J. Breil, and S. Galera, J. Comput. Phys., 2010, 229: 4724
CrossRef
ADS
Google scholar
|
[70] |
S. Galera, P. H. Maire, and J. Breil, J. Comput. Phys., 2010, 229(16): 5755
CrossRef
ADS
Google scholar
|
[71] |
S. Ssher and R. P. Fedkiw, J. Comput. Phys., 2001, 169: 463
CrossRef
ADS
Google scholar
|
[72] |
M. Sussman, P. Smereka, and S. Osher, J. Comput. Phys., 1994, 114(1): 146
CrossRef
ADS
Google scholar
|
[73] |
R. Scardovelli and S. Zaleski, Annu. Rev. Fluid Mech., 1999, 31(1): 567
CrossRef
ADS
Google scholar
|
[74] |
G. Tryggvason, B. Bunner, A. Esmaeeli, and D. Juric, J. Comput. Phys., 2001, 169: 708
CrossRef
ADS
Google scholar
|
[75] |
J. Glimm, J. W. Grove, X. L. Li, and D. C. Tan, SIAM J. Sci. Comput., 2000, 21(6): 2240
CrossRef
ADS
Google scholar
|
[76] |
D. K. Mao, J. Comput. Phys., 2007, 226(2): 1550
CrossRef
ADS
Google scholar
|
[77] |
J. Sun and J. Zhu, Theory of Detonation Physics, Beijing: National Defense Industry Press, 1995(in Chinese)
|
[78] |
S. Succi, G. Bella, and F. Papetti, J. Sci. Comput., 1997, 12(4): 395
CrossRef
ADS
Google scholar
|
[79] |
O. Filippova and D. Hanel, J. Comput. Phys., 2000, 158(2): 139
CrossRef
ADS
Google scholar
|
[80] |
O. Filippova and D. Hanel, Comput. Phys. Commun., 2000, 129(1-3): 267
|
[81] |
K. Yamamoto, X. He, and G. D. Doolen, J. Stat. Phys., 2002, 107(1/2): 367
CrossRef
ADS
Google scholar
|
[82] |
T. Lee, C. L. Lin, and L. D. Chen, J. Comput. Phys., 2006, 215(1): 133
CrossRef
ADS
Google scholar
|
[83] |
E. L. Lee and C. M. Tarver, Phys. Fluids, 1980, 23(12): 2362
CrossRef
ADS
Google scholar
|
[84] |
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, New York: Interscienc Publishers Inc., 1948
|
[85] |
W. W. Wood, Phys. Fluids, 1963, 6(8): 1081
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |