Demonstration of eight-partite two-diamond shape cluster state for continuous variables

Xiao-Long Su, Shu-Hong Hao, Ya-Ping Zhao, Xiao-Wei Deng, Xiao-Jun Jia, Chang-De Xie, Kun-Chi Peng

PDF(726 KB)
PDF(726 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (1) : 20-26. DOI: 10.1007/s11467-013-0284-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Demonstration of eight-partite two-diamond shape cluster state for continuous variables

Author information +
History +

Abstract

Multipartite entangled state is the basic resource for implementing quantum information networks and quantum computation. In this paper, we present the experimental demonstration of the eightpartite two-diamond shape cluster states for continuous variables, which consist of eight spatially separated and entangled optical modes. Eight resource squeezed states of light with classical coherence are produced by four nondegenerate optical parametric amplifiers and then they are transformed to the eight-partite two-diamond shape cluster states by a specially designed linear optical network. Since the spatially separated multipartite entangled state can be prepared off-line, it can be conveniently applied in the future quantum technology.

Keywords

quantum computation / continuous variable / cluster state / squeezed state

Cite this article

Download citation ▾
Xiao-Long Su, Shu-Hong Hao, Ya-Ping Zhao, Xiao-Wei Deng, Xiao-Jun Jia, Chang-De Xie, Kun-Chi Peng. Demonstration of eight-partite two-diamond shape cluster state for continuous variables. Front. Phys., 2013, 8(1): 20‒26 https://doi.org/10.1007/s11467-013-0284-1

References

[1]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
[2]
S. L. Braunstein and P. van Loock, Rev. Mod. Phys., 2005, 77(2): 513
CrossRef ADS Google scholar
[3]
R. Raussendorf and H. J. Briegel, Phys. Rev. Lett., 2001, 86(22): 5188
CrossRef ADS Google scholar
[4]
N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, Phys. Rev. Lett., 2006, 97(11): 110501
CrossRef ADS Google scholar
[5]
P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature, 2005, 434(7030): 169
CrossRef ADS Google scholar
[6]
K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J.W. Pan, Phys. Rev. Lett., 2007, 99(12): 120503
CrossRef ADS Google scholar
[7]
W. Gao, P. Xu, X. Yao, O. Gühne, A. Cabello, C. Y. Lu, C. Z. Peng, Z. B. Chen, and J. W. Pan, Phys. Rev. Lett., 2010, 104(2): 020501
CrossRef ADS Google scholar
[8]
P. van Loock, J. Opt. Soc. Am. B, 2007, 24: 340
CrossRef ADS Google scholar
[9]
A. Tan, C. Xie, and K. Peng, Phys. Rev. A, 2009, 79(4): 042338
CrossRef ADS Google scholar
[10]
M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, Phys. Rev. A, 2009, 79(6): 062318
CrossRef ADS Google scholar
[11]
Y. Miwa, J. I. Yoshikawa, P. van Loock, and A. Furusawa, Phys. Rev. A, 2009, 80(5): 050303(R)
CrossRef ADS Google scholar
[12]
Y. Wang, X. Su, H. Shen, A. Tan, C. Xie, and K. Peng, Phys. Rev. A, 2010, 81(2): 022311
CrossRef ADS Google scholar
[13]
R. Ukai, N. Iwata, Y. Shimokawa, S. C. Armstrong, A. Politi, J. Yoshikawa, P. van Loock, and A. Furusawa, Phys. Rev. Lett., 2011, 106(24): 240504
CrossRef ADS Google scholar
[14]
R. Ukai, S. Yokoyama, J. I. Yoshikawa, P. van Loock, and A. Furusawa, Phys. Rev. Lett., 2011, 107(25): 250501
CrossRef ADS Google scholar
[15]
X. Su, A. Tan, X. Jia, J. Zhang, C. Xie, and K. Peng, Phys. Rev. Lett., 2007, 98(7): 070502
CrossRef ADS Google scholar
[16]
M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, Phys. Rev. A, 2008, 78(1): 012301
CrossRef ADS Google scholar
[17]
A. Tan, Y. Wang, X. Jin, X. Su, X. Jia, J. Zhang, C. Xie, and K. Peng, Phys. Rev. A, 2008, 78(1): 013828
CrossRef ADS Google scholar
[18]
M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, Phys. Rev. Lett., 2011, 107(3): 030505
CrossRef ADS Google scholar
[19]
X. Su, Y. Zhao, S. Hao, X. Jia, C. Xie, and K. Peng, Opt. Lett., 2012, 37(24): 5178
CrossRef ADS Google scholar
[20]
P. van Loock and A. Furusawa, Phys. Rev. A, 2003, 67(5): 052315
CrossRef ADS Google scholar
[21]
J. Zhang and S. L. Braunstein, Phys. Rev. A, 2006, 73(3): 032318
CrossRef ADS Google scholar
[22]
P. van Loock, C.Weedbrook, and M. Gu, Phys. Rev. A, 2007, 76(3): 032321
CrossRef ADS Google scholar
[23]
N. C. Menicucci, S. T. Flammia, and P. van Loock, Phys. Rev. A, 2011, 83(4): 042335
CrossRef ADS Google scholar
[24]
Y. Wang, Y. Zheng, C. Xie, and K. Peng, IEEE J. Quantum Electron., 2011, 47(7): 1006
CrossRef ADS Google scholar
[25]
X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, Phys. Rev. Lett., 2002, 88(4): 047904
CrossRef ADS Google scholar
[26]
Y. Wang, H. Shen, X. Jin, X. Su, C. Xie, and K. Peng, Opt. Express, 2010, 18(6): 6149
CrossRef ADS Google scholar
[27]
Y. Zhang, H. Wang, X. Li, J. Jing, C. Xie, and K. Peng, Phys. Rev. A, 2000, 62(2): 023813
CrossRef ADS Google scholar
[28]
T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M.Mehmet, H. Müller-Ebhardt, and R. Schnabel, Phys. Rev. Lett., 2010, 104(25): 251102
CrossRef ADS Google scholar
[29]
Z. Yan, X. Jia, X. Su, Z. Duan, C. Xie, and K. Peng, Phys. Rev. A, 2012, 85(4): 040305(R)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(726 KB)

Accesses

Citations

Detail

Sections
Recommended

/