A review of direct numerical simulations of astrophysical detonations and their implications

Suzanne T. Parete-Koon, Christopher R. Smith, Thomas L. Papatheodore, O. E. Bronson Messer

PDF(306 KB)
PDF(306 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (2) : 189-198. DOI: 10.1007/s11467-013-0279-y
REVIEW ARTICLE
REVIEW ARTICLE

A review of direct numerical simulations of astrophysical detonations and their implications

Author information +
History +

Abstract

Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use onedimensional DNS of detonations as inputs or constraints for their whole star simulations.While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerable effort has been expended modeling Type Ia supernovae at densities above 1×107 g·cm-3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1×107 g·cm-3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. This work will review the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman–Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.

Keywords

supernova / detonations / direct numerical simulations

Cite this article

Download citation ▾
Suzanne T. Parete-Koon, Christopher R. Smith, Thomas L. Papatheodore, O. E. Bronson Messer. A review of direct numerical simulations of astrophysical detonations and their implications. Front. Phys., 2013, 8(2): 189‒198 https://doi.org/10.1007/s11467-013-0279-y

References

[1]
W. Arnett, Astrophysics and Space Sciences, 1969, 5: 180
CrossRef ADS Google scholar
[2]
S. Woosley and T. Weaver, Ann. Rev. Astron. Astrophys., 1986, 24: 205
CrossRef ADS Google scholar
[3]
A. Filippenko, Ann. Rev. Astron. Astrophys., 1997, 35: 309
CrossRef ADS Google scholar
[4]
D. Kasen, F. Röpke, and S. Woosley, Nature, 2009, 460: 869
CrossRef ADS Google scholar
[5]
E. S. Oran, V. N. Gamezo, and D. A. Kessler, Tech. Rep. RL/MR/6400–11-9332, Naval Research Laboratory, 2011
[6]
A. Y. Poludnenko, T. A. Gardiner, and E. S. Oran, Phys. Rev. Lett., 2011, 107(5): 054501
CrossRef ADS Google scholar
[7]
F. Timmes and S. Woosley, Astrophys. J., 1992, 396: 649
CrossRef ADS Google scholar
[8]
A. Calder, D. Townsley, I. Seitenzahl, F. Peng, O. Messer, N. Vladimirova, E. Brown, J. Truran, and D. Lamb, Astrophys. J., 2007, 656: 313
CrossRef ADS Google scholar
[9]
D. Chapman, Philosophical Magazine, 1899, 47: 90
[10]
J. Jouguet, J. Math. Pure Appl., 1905, 1: 347
[11]
B. Fryxell, E. A. Muller, and D. Arnett, Max Plank Institute for Astrophysics, Pre-print, 1989: 449
[12]
W. Fickett and W. Davis, Detonation: Theory and Experiment, Courier Dover, 1979
[13]
Y. Zeldovitch, Zh. Eksp. Teor. Fiz., 1940, 10: 524
[14]
J. von Neumann, OSRD Reports, 1942: 549: 1
[15]
W. Döring, Annalen der Physik, 1943: 435
[16]
F. X. Timmes and F. D. Swesty, Astrophys. J. Suppl., 2000, 126: 501
CrossRef ADS Google scholar
[17]
L. D. Landau and E. M. Lifhshitz, Fluid Mechanics, Pergamon Press, 1959
[18]
D. Arnett, Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present, Princeton: Princeton University Press, 1996
[19]
B. Fryxell, K. Olsen, P. Ricker, F. Timmes, M. Zingale, D. Lamb, P. MacNeice, R. Rosner, J. Truran, and H. Tufo, Astrophys. J. Suppl., 2000, 131: 273
CrossRef ADS Google scholar
[20]
E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow, Cambridge: Cambridge University Press, 1987
[21]
J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, LCPFCT-A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations, Tech. Rep., Naval Research Lab, 1993
[22]
P. Colella and P. Woodward, J. Comput. Phys., 1984, 54: 174
CrossRef ADS Google scholar
[23]
G. Sharpe, Mon. Not. R. Astron. Soc., 1999, 310: 1039
CrossRef ADS Google scholar
[24]
W. Hix, A. M. Khokhlov, J. C. Wheeler, and F. Thielemann, Astrophys. J., 1998, 503: 332
CrossRef ADS Google scholar
[25]
F. X. Timmes, R. D. Hoffman, and S. E. Woosley, Astrophys. J. Suppl., 2000a, 129: 377
CrossRef ADS Google scholar
[26]
W. R. Hix, S. T. Parete-Koon, C. Freiburghaus, and F.-K. Thielemann, Astrophys. J., 2007, 667: 476
CrossRef ADS Google scholar
[27]
M. W. Guidry, J. Comput. Phys., 1012, 232: 5266
[28]
S. Godunov, Matematicheskii Sbornik, 1959, 47: 165
[29]
C. Arnold, Ph.D. thesis, University of Michigan, 1985
[30]
P. Lax and B. Wendroff, Communications on Pure and Applied Mathematics, 1960, 13: 217
CrossRef ADS Google scholar
[31]
P. Lax and B. Wendroff, Communications on Pure and Applied Mathematics, 1964, 17: 381
CrossRef ADS Google scholar
[32]
R. A. Gentry, R. E. Martin, and B. J. Daley, J. Comput. Phys., 1966, 1: 87
CrossRef ADS Google scholar
[33]
F. Thielemann, 1985 (private communication)
[34]
Y. N. Denisav and Y. K. Troshin, Dokl. Akad. Nauk SSSR (Phys.-Chem. Sec.), 1959, 125: 110
[35]
B. V. Voitsekhovsky, V. V. Mitrofanov, and M. E. Topchian, Izd. Akad. Nauk SSSR, 1963
[36]
I. Dominguez and A. Khokhlov, Astrophys. J., 2011, 730: 87
CrossRef ADS Google scholar
[37]
F. Timmes, R. Hoffman, and S. Woosley, Astrophys. J., 2000b, 129: 377
CrossRef ADS Google scholar
[38]
J. E. Shepherd, in: Proceedings of the Combustion Institute, 2009
[39]
D. Stewart and A. Kasimov, Journal of Propulsion and Power, 2006, 22: 1230
CrossRef ADS Google scholar
[40]
A. Khokhlov, Mon. Not. R. Astron. Soc., 1989, 239: 785
[41]
J. H. Lee, Annual Review of Fluid Mechanics, 1984, 16: 311
CrossRef ADS Google scholar
[42]
A. M. Khokhlov, Astrophys. J., 1993, 419: 200
CrossRef ADS Google scholar
[43]
J. Boisseau, J. Wheeler, E. Oran, and A. Khokhlov, Astrophys. J., 1996, 471: L99
CrossRef ADS Google scholar
[44]
V. N. Gamezo, J. Wheeler, A. Khokhlov, and E. Oran, Astrophys. J., 1999, 512: 827
CrossRef ADS Google scholar
[45]
A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, G. Henry, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. X. Timmes, , in: Super Computing Gordon Bell Prize Paper, 2000
[46]
D. N. Williams, L. Bauwens, and E. S. Oran, Symposium on Combustion and Flame, and Explosion Phenomena, 1996, 26: 2991
[47]
S. Parete-Koon, C. Smith, M. Guidry, R. Hix, and O. Messer, J. Phys., 2012 (in press)
[48]
A. Maier and J. Niemeyer, Astron. Astrophys., 2006, 451: 207
CrossRef ADS Google scholar
[49]
C. A. Meakin, I. Sietenzahl, D. Townsley, G. C. J. IV, J. Truran, and D. Lamb, Astrophys. J., 2009, 693: 1188
CrossRef ADS Google scholar
[50]
A. M. Khokhlov, Astrophys. J., 1995, 449: 695
CrossRef ADS Google scholar
[51]
M. Zingale, S. Woosley, C. A. Rendleman, M. Day, and J. B. Bell, Astrophys. J., 2005, 632: 1021
CrossRef ADS Google scholar
[52]
A. P. Jackson, A. C. Calder, D. M. Townsley, D. A. Chamulak, E. F. Brown, and F. X. Timmes, Astrophys. J., 2010, 720: 99
CrossRef ADS Google scholar
[53]
D. M. Townsley, A. P. Jackson, A. C. Calder, D. A. Chamulak, E. F. Brown, and F. X. Timmes, Astrophys. J., 2009, 701: 1582, 1604

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(306 KB)

Accesses

Citations

Detail

Sections
Recommended

/