A review of direct numerical simulations of astrophysical detonations and their implications

Suzanne T. Parete-Koon , Christopher R. Smith , Thomas L. Papatheodore , O. E. Bronson Messer

Front. Phys. ›› 2013, Vol. 8 ›› Issue (2) : 189 -198.

PDF (306KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (2) : 189 -198. DOI: 10.1007/s11467-013-0279-y
REVIEW ARTICLE

A review of direct numerical simulations of astrophysical detonations and their implications

Author information +
History +
PDF (306KB)

Abstract

Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use onedimensional DNS of detonations as inputs or constraints for their whole star simulations.While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerable effort has been expended modeling Type Ia supernovae at densities above 1×107 g·cm-3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1×107 g·cm-3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. This work will review the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman–Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.

Keywords

supernova / detonations / direct numerical simulations

Cite this article

Download citation ▾
Suzanne T. Parete-Koon, Christopher R. Smith, Thomas L. Papatheodore, O. E. Bronson Messer. A review of direct numerical simulations of astrophysical detonations and their implications. Front. Phys., 2013, 8(2): 189-198 DOI:10.1007/s11467-013-0279-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Arnett, Astrophysics and Space Sciences, 1969, 5: 180

[2]

S. Woosley and T. Weaver, Ann. Rev. Astron. Astrophys., 1986, 24: 205

[3]

A. Filippenko, Ann. Rev. Astron. Astrophys., 1997, 35: 309

[4]

D. Kasen, F. Röpke, and S. Woosley, Nature, 2009, 460: 869

[5]

E. S. Oran, V. N. Gamezo, and D. A. Kessler, Tech. Rep. RL/MR/6400–11-9332, Naval Research Laboratory, 2011

[6]

A. Y. Poludnenko, T. A. Gardiner, and E. S. Oran, Phys. Rev. Lett., 2011, 107(5): 054501

[7]

F. Timmes and S. Woosley, Astrophys. J., 1992, 396: 649

[8]

A. Calder, D. Townsley, I. Seitenzahl, F. Peng, O. Messer, N. Vladimirova, E. Brown, J. Truran, and D. Lamb, Astrophys. J., 2007, 656: 313

[9]

D. Chapman, Philosophical Magazine, 1899, 47: 90

[10]

J. Jouguet, J. Math. Pure Appl., 1905, 1: 347

[11]

B. Fryxell, E. A. Muller, and D. Arnett, Max Plank Institute for Astrophysics, Pre-print, 1989: 449

[12]

W. Fickett and W. Davis, Detonation: Theory and Experiment, Courier Dover, 1979

[13]

Y. Zeldovitch, Zh. Eksp. Teor. Fiz., 1940, 10: 524

[14]

J. von Neumann, OSRD Reports, 1942: 549: 1

[15]

W. Döring, Annalen der Physik, 1943: 435

[16]

F. X. Timmes and F. D. Swesty, Astrophys. J. Suppl., 2000, 126: 501

[17]

L. D. Landau and E. M. Lifhshitz, Fluid Mechanics, Pergamon Press, 1959

[18]

D. Arnett, Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present, Princeton: Princeton University Press, 1996

[19]

B. Fryxell, K. Olsen, P. Ricker, F. Timmes, M. Zingale, D. Lamb, P. MacNeice, R. Rosner, J. Truran, and H. Tufo, Astrophys. J. Suppl., 2000, 131: 273

[20]

E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow, Cambridge: Cambridge University Press, 1987

[21]

J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, LCPFCT-A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations, Tech. Rep., Naval Research Lab, 1993

[22]

P. Colella and P. Woodward, J. Comput. Phys., 1984, 54: 174

[23]

G. Sharpe, Mon. Not. R. Astron. Soc., 1999, 310: 1039

[24]

W. Hix, A. M. Khokhlov, J. C. Wheeler, and F. Thielemann, Astrophys. J., 1998, 503: 332

[25]

F. X. Timmes, R. D. Hoffman, and S. E. Woosley, Astrophys. J. Suppl., 2000a, 129: 377

[26]

W. R. Hix, S. T. Parete-Koon, C. Freiburghaus, and F.-K. Thielemann, Astrophys. J., 2007, 667: 476

[27]

M. W. Guidry, J. Comput. Phys., 1012, 232: 5266

[28]

S. Godunov, Matematicheskii Sbornik, 1959, 47: 165

[29]

C. Arnold, Ph.D. thesis, University of Michigan, 1985

[30]

P. Lax and B. Wendroff, Communications on Pure and Applied Mathematics, 1960, 13: 217

[31]

P. Lax and B. Wendroff, Communications on Pure and Applied Mathematics, 1964, 17: 381

[32]

R. A. Gentry, R. E. Martin, and B. J. Daley, J. Comput. Phys., 1966, 1: 87

[33]

F. Thielemann, 1985 (private communication)

[34]

Y. N. Denisav and Y. K. Troshin, Dokl. Akad. Nauk SSSR (Phys.-Chem. Sec.), 1959, 125: 110

[35]

B. V. Voitsekhovsky, V. V. Mitrofanov, and M. E. Topchian, Izd. Akad. Nauk SSSR, 1963

[36]

I. Dominguez and A. Khokhlov, Astrophys. J., 2011, 730: 87

[37]

F. Timmes, R. Hoffman, and S. Woosley, Astrophys. J., 2000b, 129: 377

[38]

J. E. Shepherd, in: Proceedings of the Combustion Institute, 2009

[39]

D. Stewart and A. Kasimov, Journal of Propulsion and Power, 2006, 22: 1230

[40]

A. Khokhlov, Mon. Not. R. Astron. Soc., 1989, 239: 785

[41]

J. H. Lee, Annual Review of Fluid Mechanics, 1984, 16: 311

[42]

A. M. Khokhlov, Astrophys. J., 1993, 419: 200

[43]

J. Boisseau, J. Wheeler, E. Oran, and A. Khokhlov, Astrophys. J., 1996, 471: L99

[44]

V. N. Gamezo, J. Wheeler, A. Khokhlov, and E. Oran, Astrophys. J., 1999, 512: 827

[45]

A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, G. Henry, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. X. Timmes, , in: Super Computing Gordon Bell Prize Paper, 2000

[46]

D. N. Williams, L. Bauwens, and E. S. Oran, Symposium on Combustion and Flame, and Explosion Phenomena, 1996, 26: 2991

[47]

S. Parete-Koon, C. Smith, M. Guidry, R. Hix, and O. Messer, J. Phys., 2012 (in press)

[48]

A. Maier and J. Niemeyer, Astron. Astrophys., 2006, 451: 207

[49]

C. A. Meakin, I. Sietenzahl, D. Townsley, G. C. J. IV, J. Truran, and D. Lamb, Astrophys. J., 2009, 693: 1188

[50]

A. M. Khokhlov, Astrophys. J., 1995, 449: 695

[51]

M. Zingale, S. Woosley, C. A. Rendleman, M. Day, and J. B. Bell, Astrophys. J., 2005, 632: 1021

[52]

A. P. Jackson, A. C. Calder, D. M. Townsley, D. A. Chamulak, E. F. Brown, and F. X. Timmes, Astrophys. J., 2010, 720: 99

[53]

D. M. Townsley, A. P. Jackson, A. C. Calder, D. A. Chamulak, E. F. Brown, and F. X. Timmes, Astrophys. J., 2009, 701: 1582, 1604

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (306KB)

1042

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/