Study on parameters influencing analytical performance of laser-induced breakdown spectroscopy
Yong Zhang, Yun-Hai Jia, Jin-Wen Chen, Xue-Jing Shen, Lei Zhao, Chun Yang, Yong-Yan Chen, Yong-Hui Zhang, Peng-Cheng Han
Study on parameters influencing analytical performance of laser-induced breakdown spectroscopy
Lens-to-sample distances, delay time, atmospheric condition, laser pulse energy, etc. had obvious effects on the analytical performance of laser-induced breakdown spectroscopy. In this paper, these parameters are investigated in greater detail and we will explain how they have influences on the analytical performance. The results show that the focal plane under the sample surface can improve precision and detection limit, and the delay time should be decided according to sensitivity and accuracy. Spectral line intensity is stronger in argon than helium, nitrogen and air gas environment. Pulse energy should exceed energy threshold (about 50 mJ) which can generate plasma, and the energy should not exceed about 300 mJ to avoid plasma shielding. Under optimum parameters, concentration relative standard deviation of C, Si, Mn, P, S, Ni, and Cr for low-alloyed steel (sample number 11278) which were measured 11 times is 2.37%, 2.18%, 2.23%, 7.8%, 9.34%, 1.92%, and 2.13%, respectively. And the detection limit of C, Si, Mn, P, S, Ni, and Cr for pure steel is 0.0045%, 0.0072%, 0.0069%, 0.0027%, 0.0024%, 0.0047%, and 0.0024%, respectively.
laser-induced breakdown spectroscopy (LIBS) / analytical performance / plasma diagnosis / plasma shielding
[1] |
V. Bulatov, L. Xu, and I. Schechter, Anal. Chem., 1996, 68(17): 2966
CrossRef
ADS
Google scholar
|
[2] |
J. A. Aguilera and C. Aragón, Spectrochim. Acta B, 2004, 59: 1861
|
[3] |
R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, Spectrochim. Acta B, 2001, 56: 637
|
[4] |
M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, and L. Paulard, Spectrochim. Acta B, 2001, 56: 661
|
[5] |
H. Bette, R. Noll, G. Müller, H. W. Jansen, Ç. Nazikkol, and H. Mittelstädt, J. Laser Appl., 2005, 17(3): 183
CrossRef
ADS
Google scholar
|
[6] |
H. M. Kuss, H. Mittelstaedt, and G. Mueller, J. Anal. At. Spectrom., 2005, 20(8): 730
CrossRef
ADS
Google scholar
|
[7] |
R. Sattmann, V. Sturm, and R. Noll, J. Phys. D, 1995, 28(10): 2181
CrossRef
ADS
Google scholar
|
[8] |
F. Colao, V. Lazic, R. Fantoni, and S. Pershin, Spectrochim. Acta B, 2002, 57: 1167
|
[9] |
A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, Appl. Spectrosc., 1999, 53(8): 960
CrossRef
ADS
Google scholar
|
[10] |
E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, Spectrochim. Acta B, 2010, 65: 1
|
[11] |
Z. Wang, F. Jie, L. Z. Li, W. D. Ni, and Z. Li, J. Anal. At. Spectrom., 2011, 26(11): 2289
CrossRef
ADS
Google scholar
|
[12] |
J. B. Sirven, B. Bousquet, L. Canioni, and L. Sarger, Anal. Chem., 2006, 78(5): 1462
CrossRef
ADS
Google scholar
|
[13] |
J. A. Aguilera, C. Aragón, and F. A. Peñalba, Appl. Surf. Sci., 1998, 127-129: 309
CrossRef
ADS
Google scholar
|
[14] |
G. Dimitro and T. Zheleva, Spectrochim. Acta B, 1984, 39: 1209
|
[15] |
R. Sattmann, V. Sturm, and R. Noll, J. Phys. D, 1995, 28(10): 2181
CrossRef
ADS
Google scholar
|
[16] |
E. H. Piepmeier and H. V. Malmstadt, Anal. Chem., 1969, 41(6): 700
CrossRef
ADS
Google scholar
|
[17] |
R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, Anal. Chem., 1994, 66(18): 2964
CrossRef
ADS
Google scholar
|
[18] |
L. M. Cabalín and J. J. Laserna, Spectrochim. Acta B, 1998, 53: 723
|
[19] |
Y. Iida, Spectrochim. Acta B, 1990, 45: 1353
|
[20] |
A. W. Effenberger and J. R. Scott, Sensors, 2010, 10(5): 4907
CrossRef
ADS
Google scholar
|
[21] |
C. B. Dreyer, G. S. Mungas, P. Thanh, and J. G. Radziszewski, Spectrochim. Acta B., 2007, 62: 1448
|
[22] |
L. Peter and R. Noll, Appl. Phys. B, 2007, 86(1): 159
CrossRef
ADS
Google scholar
|
[23] |
L. J. Radziemski and D. A. Cremers, Laser-Induced Plasma and Applications, New York: Marcel Dekker, 1989
|
/
〈 | 〉 |