Steady-state property and dynamics in graphene-nanoribbon-array lasers
Xing-Hai Zhao, Guang-Cun Shan, Chan-Hung Shek
Steady-state property and dynamics in graphene-nanoribbon-array lasers
In this work, we present a schematic configuration and devicemodel for a graphene-nanoribbon (GNR)-array-based nanolaser, whichconsists of a three-variable rate equations that takes into accountcarrier capture and Pauli blocking in semiconductor GNR-array lasersto analyze the steadystate properties and dynamics in terms of therole of the capture rate and the gain coefficient in GNR array nanolasers.Furthermore, our GNR-array nanolaser device model can be determinedas two distinct two-variable reductions of the rate equations in thelimit of large capture rates, depending on their relative values.The first case leads to the rate equations for quantum well lasers,exhibiting relaxation oscillations dynamics. The second case correspondsto GNRs nearly saturated by the carriers and is characterized by theabsence of relaxation oscillations. Our results here demonstratedthat GNR-array as gain material embedded into a high finesse microcavitycan serve as an ultralow lasing threshold nanolaser with promisingapplications ranging widely from optical fiber communication withincreasing data processing speed to digital optical recording andbiology spectroscopy.
graphene nanoribbon / graphenenanoribbon laser / laser theory / laser model
[1] |
D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, New York: Wiley, 1999
|
[2] |
M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Y. M. Shernyakov, Appl. Phys. Lett., 2002, 81(20): 3846
CrossRef
ADS
Google scholar
|
[3] |
D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, Opt. Lett., 2004, 29: 1074
CrossRef
ADS
Google scholar
|
[4] |
S. Melnik, G. Huyet, and A. V. Uskov, Opt. Express, 2006, 14(7): 2950
CrossRef
ADS
Google scholar
|
[5] |
T. Erneux, E. A. Viktorov, and P. Mandel, Phys. Rev. A, 2007, 76(2): 023819
CrossRef
ADS
Google scholar
|
[6] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 2004, 306(5696): 666
CrossRef
ADS
Google scholar
|
[7] |
K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nat. Mater., 2009, 8(3): 203
CrossRef
ADS
Google scholar
|
[8] |
C. Stampfer, S. Fringes, J. Guttinger, F. Molitor, C. Volk, B. Terres, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Droscher, T. Ihn, and K. Ensslin, Front. Phys., 2011, 6(3): 271
CrossRef
ADS
Google scholar
|
[9] |
Z. Chen, Y. M. Lin, M. J. Rooks, and P. Avouris, Physica E, 2007, 40(2): 228
CrossRef
ADS
Google scholar
|
[10] |
M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys.Rev. Lett., 2007, 98(20): 206805
CrossRef
ADS
Google scholar
|
[11] |
F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon., 2010, 4(9): 611
CrossRef
ADS
Google scholar
|
[12] |
G. C. Shan, X. H. Zhao, and W. Huang, J. Nanoelectron. Optoelectron., 2011, 6(2): 138
|
[13] |
L. Brey and H. A. Fertig, Phys. Rev. B, 2006, 73(23): 235411
CrossRef
ADS
Google scholar
|
[14] |
L. Yang, C. H. Park, Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett., 2007, 99(18): 186801
CrossRef
ADS
Google scholar
|
[15] |
L. Yang, M. L. Cohen, and S. G. Louie, Nano Lett., 2007, 7(10): 3112
CrossRef
ADS
Google scholar
|
[16] |
J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccioni, J. Opt. Soc. Am. B, 1985, 2(1): 173
|
[17] |
A. Fiore and A. Markus, IEEE J. Quantum Electron., 2007, 43(4): 287
|
[18] |
J. V. Uspensky, Theory of Equations, New York: McGraw- Hill, 1948
CrossRef
ADS
Google scholar
|
[19] |
V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Ya. Aleshkin, J. Appl. Phys., 2009, 106(8): 084507
|
/
〈 | 〉 |