Steady-state property and dynamics in graphene-nanoribbon-array lasers

Xing-Hai Zhao, Guang-Cun Shan, Chan-Hung Shek

PDF(316 KB)
PDF(316 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (5) : 527-532. DOI: 10.1007/s11467-012-0252-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Steady-state property and dynamics in graphene-nanoribbon-array lasers

Author information +
History +

Abstract

In this work, we present a schematic configuration and devicemodel for a graphene-nanoribbon (GNR)-array-based nanolaser, whichconsists of a three-variable rate equations that takes into accountcarrier capture and Pauli blocking in semiconductor GNR-array lasersto analyze the steadystate properties and dynamics in terms of therole of the capture rate and the gain coefficient in GNR array nanolasers.Furthermore, our GNR-array nanolaser device model can be determinedas two distinct two-variable reductions of the rate equations in thelimit of large capture rates, depending on their relative values.The first case leads to the rate equations for quantum well lasers,exhibiting relaxation oscillations dynamics. The second case correspondsto GNRs nearly saturated by the carriers and is characterized by theabsence of relaxation oscillations. Our results here demonstratedthat GNR-array as gain material embedded into a high finesse microcavitycan serve as an ultralow lasing threshold nanolaser with promisingapplications ranging widely from optical fiber communication withincreasing data processing speed to digital optical recording andbiology spectroscopy.

Keywords

graphene nanoribbon / graphenenanoribbon laser / laser theory / laser model

Cite this article

Download citation ▾
Xing-Hai Zhao, Guang-Cun Shan, Chan-Hung Shek. Steady-state property and dynamics in graphene-nanoribbon-array lasers. Front. Phys., 2012, 7(5): 527‒532 https://doi.org/10.1007/s11467-012-0252-1

References

[1]
D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, New York: Wiley, 1999
[2]
M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Y. M. Shernyakov, Appl. Phys. Lett., 2002, 81(20): 3846
CrossRef ADS Google scholar
[3]
D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, Opt. Lett., 2004, 29: 1074
CrossRef ADS Google scholar
[4]
S. Melnik, G. Huyet, and A. V. Uskov, Opt. Express, 2006, 14(7): 2950
CrossRef ADS Google scholar
[5]
T. Erneux, E. A. Viktorov, and P. Mandel, Phys. Rev. A, 2007, 76(2): 023819
CrossRef ADS Google scholar
[6]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 2004, 306(5696): 666
CrossRef ADS Google scholar
[7]
K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nat. Mater., 2009, 8(3): 203
CrossRef ADS Google scholar
[8]
C. Stampfer, S. Fringes, J. Guttinger, F. Molitor, C. Volk, B. Terres, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Droscher, T. Ihn, and K. Ensslin, Front. Phys., 2011, 6(3): 271
CrossRef ADS Google scholar
[9]
Z. Chen, Y. M. Lin, M. J. Rooks, and P. Avouris, Physica E, 2007, 40(2): 228
CrossRef ADS Google scholar
[10]
M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys.Rev. Lett., 2007, 98(20): 206805
CrossRef ADS Google scholar
[11]
F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon., 2010, 4(9): 611
CrossRef ADS Google scholar
[12]
G. C. Shan, X. H. Zhao, and W. Huang, J. Nanoelectron. Optoelectron., 2011, 6(2): 138
[13]
L. Brey and H. A. Fertig, Phys. Rev. B, 2006, 73(23): 235411
CrossRef ADS Google scholar
[14]
L. Yang, C. H. Park, Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett., 2007, 99(18): 186801
CrossRef ADS Google scholar
[15]
L. Yang, M. L. Cohen, and S. G. Louie, Nano Lett., 2007, 7(10): 3112
CrossRef ADS Google scholar
[16]
J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccioni, J. Opt. Soc. Am. B, 1985, 2(1): 173
[17]
A. Fiore and A. Markus, IEEE J. Quantum Electron., 2007, 43(4): 287
[18]
J. V. Uspensky, Theory of Equations, New York: McGraw- Hill, 1948
CrossRef ADS Google scholar
[19]
V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Ya. Aleshkin, J. Appl. Phys., 2009, 106(8): 084507

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(316 KB)

Accesses

Citations

Detail

Sections
Recommended

/