Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions

Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Ying-Jun Li

PDF(825 KB)
PDF(825 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 481-490. DOI: 10.1007/s11467-012-0245-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions

Author information +
History +

Abstract

The aims of the present paper are threefold. First, we further study the fast Fourier transform thermal lattice Boltzmann (FFT–TLB) model for van der Waals (VDW) fluids proposed in Phys. Rev. E, 2011, 84(4): 046715. We analyze the merits of the FFT approach over the traditional finite difference scheme and investigate the effects of smoothing factors on accuracy and stability in detail. Second, we incorporate the VDW equation of state with flexible parameters into the FFT–TLB model. As a result, the revised model may be used to handle multiphase flows with various critical densities and temperatures. Third, we design appropriate boundary conditions for systems with solid walls. These improvements, from the views of numerics and physics, significantly extend the application scope of the model in science and engineering.

Keywords

van der Waals fluids / lattice Boltzmann method / FFT / equation of state

Cite this article

Download citation ▾
Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Ying-Jun Li. Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions. Front. Phys., 2012, 7(4): 481‒490 https://doi.org/10.1007/s11467-012-0245-0

References

[1]
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases, London: Cambridge University Press, 1970
[2]
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, New York: Oxford University Press, 2001
[3]
Z. Guo and C. Zheng, Theory and Applications of Lattice Boltzmann Method, Beijing: Science Press, 2009 (in Chinese)
[4]
A. Xu, Phys. Rev. E, 2005, 71(6): 066706
CrossRef ADS Google scholar
[5]
A. Xu, Europhys. Lett., 2005, 69(2): 214
CrossRef ADS Google scholar
[6]
Y. Gan, A. Xu, G. Zhang, X. Yu, and Y. Li, Physica A, 2008, 387(8-9): 1721
CrossRef ADS Google scholar
[7]
Z. Guo, C. Zheng, and B. Shi, Phys. Rev. E, 2008, 77(3): 036707
CrossRef ADS Google scholar
[8]
B. Shi and Z. Guo, Phys. Rev. E, 2009, 79(1): 016701
CrossRef ADS Google scholar
[9]
Q. Li, Y. L. He, Y. Wang, and W. Q. Tao, Phys. Rev. E, 2007, 76(5): 056705
CrossRef ADS Google scholar
[10]
Q. Li, Y. L. He, G. H. Tang, and W. Q. Tao, Phys. Rev. E, 2009, 80(3): 037702
CrossRef ADS Google scholar
[11]
Q. Li, Y. L. He, G. H. Tang, and W. Q. Tao, Microfluid. Nanofluid., 2011, 10(3): 607
CrossRef ADS Google scholar
[12]
Q. Li, K. H. Luo, Y. L. He, Y. J. Gao, and W. Q. Tao, Phys. Rev. E, 2012, 85(1): 016710
CrossRef ADS Google scholar
[13]
H. Lai and C. Ma, J. Stat. Mech.: Theory Exp., 2010, 2010(4): P04011
CrossRef ADS Google scholar
[14]
H. Lai and C. Ma, Phys. Rev. E, 2011, 84(4): 046708
CrossRef ADS Google scholar
[15]
H. Li, X. Lu, H. Fang, and Y. Qian, Phys. Rev. E, 2004, 70(2): 026701
CrossRef ADS Google scholar
[16]
B. Wen, H. Li, C. Zhang, and H. Fang, Phys. Rev. E, 2012, 85(1): 016704
CrossRef ADS Google scholar
[17]
D. H. Rothman and J. M. Keller, J. Stat. Phys., 1988, 52(3-4): 1119
CrossRef ADS Google scholar
[18]
A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti, Phys. Rev. A, 1991, 43(8): 4320
CrossRef ADS Google scholar
[19]
X. Shan and H. Chen, Phys. Rev. E, 1993, 47(3): 1815
CrossRef ADS Google scholar
[20]
X. Shan and H. Chen, Phys. Rev. E, 1994, 49(4): 2941
CrossRef ADS Google scholar
[21]
M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev. Lett., 1995, 75(5): 830
CrossRef ADS Google scholar
[22]
W. R. Osborn, E. Orlandini, M. R. Swift, J. M. Yeomans, and J. R. Banavar, Phys. Rev. Lett., 1995, 75(22): 4031
CrossRef ADS Google scholar
[23]
A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E, 2003, 67(5): 056105
CrossRef ADS Google scholar
[24]
A. Xu, G. Gonnella, and A. Lamura, Physica A, 2004, 331(1-2): 10
CrossRef ADS Google scholar
[25]
A. Xu, G. Gonnella, and A. Lamura, Physica A, 2004, 344(3-4): 750
CrossRef ADS Google scholar
[26]
A. Xu, G. Gonnella, A. Lamura, G. Amati, and F. Massaioli, Europhys. Lett., 2005, 71(4): 651
CrossRef ADS Google scholar
[27]
A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E, 2006, 74(1): 011505
CrossRef ADS Google scholar
[28]
A. Xu, G. Gonnella, and A. Lamura, Physica A, 2006, 362(1): 42
CrossRef ADS Google scholar
[29]
F. Corberi, G. Gonnella, and A. Lamura, Phys. Rev. Lett., 1998, 81(18): 3852
CrossRef ADS Google scholar
[30]
A. Tiribocchi, N. Stella, G. Gonnella, and A. Lamura, Phys. Rev. E, 2009, 80(2): 026701
CrossRef ADS Google scholar
[31]
V. Sofonea and K. R. Mecke, Eur. Phys. J. B, 1999, 8(1): 99
CrossRef ADS Google scholar
[32]
V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Phys. Rev. E, 2004, 70(4): 046702
CrossRef ADS Google scholar
[33]
A. Cristea, G. Gonnella, A. Lamura, and V. Sofonea, Comm. Comp. Phys., 2010, 7(2): 350
[34]
R. Zhang and H. Chen, Phys. Rev. E, 2003, 67(6): 066711
CrossRef ADS Google scholar
[35]
P. Yuan and L. Schaefer, J. Fluid Eng., 2006, 128(1): 142
CrossRef ADS Google scholar
[36]
G. Gonnella, A. Lamura, A. Piscitelli, and A. Tiribocchi, Phys. Rev. E, 2010, 82(4): 046302
CrossRef ADS Google scholar
[37]
G. Gonnella, A. Lamura, and A. Tiribocchi, Phil. Trans. R. Soc. A, 2011, 369(1945): 2592
[38]
A. Márkus and G. Házi, Phys. Rev. E, 2011, 83(4): 046705
CrossRef ADS Google scholar
[39]
M. Sbragaglia, R. Benzi, L. Biferale, X. Shan, H. Chen, and S. Succi, J. Fluid Mech., 2009, 628:299
CrossRef ADS Google scholar
[40]
T. Seta, K. Kono, and S. Chen, Int. J. Mod. Phys. B, 2003, 17(1-2): 169
CrossRef ADS Google scholar
[41]
G. Gonnella, A. Lamura, and V. Sofonea, Phys. Rev. E, 2007, 76(3): 036703
CrossRef ADS Google scholar
[42]
Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E, 2011, 84(4): 046715
CrossRef ADS Google scholar
[43]
Y. Gan, A. Xu, G. Zhang, P. Zhang, and Y. Li, Europhys. Lett., 2012, 97(4): 44002
CrossRef ADS Google scholar
[44]
H. Huang, D. T. Thorne, M. G. Schaap, and M. C. Sukop, Phys. Rev. E, 2007, 76(6): 066701
CrossRef ADS Google scholar
[45]
H. Huang, M. Krafczyk, and X. Lu, Phys. Rev. E, 2011, 84(4): 046710
CrossRef ADS Google scholar
[46]
L. Zheng, B. Shi, and Z. Guo, Phys. Rev. E, 2008, 78(2): 026705
CrossRef ADS Google scholar
[47]
M. Watari and M. Tsutahara, Phys. Rev. E, 2003, 67(3): 036306
CrossRef ADS Google scholar
[48]
A. Onuki, Phys. Rev. Lett., 2005, 94(5): 054501
CrossRef ADS Google scholar
[49]
A. Onuki, Phys. Rev. E, 2007, 75(3): 036304
CrossRef ADS Google scholar
[50]
F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Europhys. Lett., 2010, 90(5): 54003
CrossRef ADS Google scholar
[51]
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, London: Springer-Verlag, 1987
[52]
C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, Bristol: Adam Hilger, 1991
CrossRef ADS Google scholar
[53]
J. P. Boyd, Chebyshev and Fourier Spectral Methods, New York: Dover Publications, 2000
[54]
S. Orszag, Phys. Rev. Lett., 1971, 26(18): 1100
CrossRef ADS Google scholar
[55]
H. Hadwiger, Math. Z., 1959, 71: 124
CrossRef ADS Google scholar
[56]
G. Gonnella1, A. Lamura, and A. Piscitelli, J. Phys. A, 2008, 41(10): 105001
[57]
Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E, 2011, 83(5): 056704
CrossRef ADS Google scholar
[58]
L. F. Wang, W. H. Ye, Z. F. Fan, and Y. J. Li, Europhys. Lett., 2010, 90(1): 15001
CrossRef ADS Google scholar
[59]
W. H. Ye, L. F. Wang, and X. T. He, Phys. Plasmas, 2010, 17(12): 122704
CrossRef ADS Google scholar
[60]
W. H. Ye, L. F. Wang, C. Xue, Z. F. Fan, and X. T. He, Phys. Plasmas, 2011, 18(2): 022704
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(825 KB)

Accesses

Citations

Detail

Sections
Recommended

/