Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions
Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Ying-Jun Li
Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions
The aims of the present paper are threefold. First, we further study the fast Fourier transform thermal lattice Boltzmann (FFT–TLB) model for van der Waals (VDW) fluids proposed in Phys. Rev. E, 2011, 84(4): 046715. We analyze the merits of the FFT approach over the traditional finite difference scheme and investigate the effects of smoothing factors on accuracy and stability in detail. Second, we incorporate the VDW equation of state with flexible parameters into the FFT–TLB model. As a result, the revised model may be used to handle multiphase flows with various critical densities and temperatures. Third, we design appropriate boundary conditions for systems with solid walls. These improvements, from the views of numerics and physics, significantly extend the application scope of the model in science and engineering.
van der Waals fluids / lattice Boltzmann method / FFT / equation of state
[1] |
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases, London: Cambridge University Press, 1970
|
[2] |
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, New York: Oxford University Press, 2001
|
[3] |
Z. Guo and C. Zheng, Theory and Applications of Lattice Boltzmann Method, Beijing: Science Press, 2009 (in Chinese)
|
[4] |
A. Xu, Phys. Rev. E, 2005, 71(6): 066706
CrossRef
ADS
Google scholar
|
[5] |
A. Xu, Europhys. Lett., 2005, 69(2): 214
CrossRef
ADS
Google scholar
|
[6] |
Y. Gan, A. Xu, G. Zhang, X. Yu, and Y. Li, Physica A, 2008, 387(8-9): 1721
CrossRef
ADS
Google scholar
|
[7] |
Z. Guo, C. Zheng, and B. Shi, Phys. Rev. E, 2008, 77(3): 036707
CrossRef
ADS
Google scholar
|
[8] |
B. Shi and Z. Guo, Phys. Rev. E, 2009, 79(1): 016701
CrossRef
ADS
Google scholar
|
[9] |
Q. Li, Y. L. He, Y. Wang, and W. Q. Tao, Phys. Rev. E, 2007, 76(5): 056705
CrossRef
ADS
Google scholar
|
[10] |
Q. Li, Y. L. He, G. H. Tang, and W. Q. Tao, Phys. Rev. E, 2009, 80(3): 037702
CrossRef
ADS
Google scholar
|
[11] |
Q. Li, Y. L. He, G. H. Tang, and W. Q. Tao, Microfluid. Nanofluid., 2011, 10(3): 607
CrossRef
ADS
Google scholar
|
[12] |
Q. Li, K. H. Luo, Y. L. He, Y. J. Gao, and W. Q. Tao, Phys. Rev. E, 2012, 85(1): 016710
CrossRef
ADS
Google scholar
|
[13] |
H. Lai and C. Ma, J. Stat. Mech.: Theory Exp., 2010, 2010(4): P04011
CrossRef
ADS
Google scholar
|
[14] |
H. Lai and C. Ma, Phys. Rev. E, 2011, 84(4): 046708
CrossRef
ADS
Google scholar
|
[15] |
H. Li, X. Lu, H. Fang, and Y. Qian, Phys. Rev. E, 2004, 70(2): 026701
CrossRef
ADS
Google scholar
|
[16] |
B. Wen, H. Li, C. Zhang, and H. Fang, Phys. Rev. E, 2012, 85(1): 016704
CrossRef
ADS
Google scholar
|
[17] |
D. H. Rothman and J. M. Keller, J. Stat. Phys., 1988, 52(3-4): 1119
CrossRef
ADS
Google scholar
|
[18] |
A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti, Phys. Rev. A, 1991, 43(8): 4320
CrossRef
ADS
Google scholar
|
[19] |
X. Shan and H. Chen, Phys. Rev. E, 1993, 47(3): 1815
CrossRef
ADS
Google scholar
|
[20] |
X. Shan and H. Chen, Phys. Rev. E, 1994, 49(4): 2941
CrossRef
ADS
Google scholar
|
[21] |
M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev. Lett., 1995, 75(5): 830
CrossRef
ADS
Google scholar
|
[22] |
W. R. Osborn, E. Orlandini, M. R. Swift, J. M. Yeomans, and J. R. Banavar, Phys. Rev. Lett., 1995, 75(22): 4031
CrossRef
ADS
Google scholar
|
[23] |
A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E, 2003, 67(5): 056105
CrossRef
ADS
Google scholar
|
[24] |
A. Xu, G. Gonnella, and A. Lamura, Physica A, 2004, 331(1-2): 10
CrossRef
ADS
Google scholar
|
[25] |
A. Xu, G. Gonnella, and A. Lamura, Physica A, 2004, 344(3-4): 750
CrossRef
ADS
Google scholar
|
[26] |
A. Xu, G. Gonnella, A. Lamura, G. Amati, and F. Massaioli, Europhys. Lett., 2005,
CrossRef
ADS
Google scholar
|
[27] |
A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E, 2006, 74(1): 011505
CrossRef
ADS
Google scholar
|
[28] |
A. Xu, G. Gonnella, and A. Lamura, Physica A, 2006, 362(1): 42
CrossRef
ADS
Google scholar
|
[29] |
F. Corberi, G. Gonnella, and A. Lamura, Phys. Rev. Lett., 1998, 81(18): 3852
CrossRef
ADS
Google scholar
|
[30] |
A. Tiribocchi, N. Stella, G. Gonnella, and A. Lamura, Phys. Rev. E, 2009, 80(2): 026701
CrossRef
ADS
Google scholar
|
[31] |
V. Sofonea and K. R. Mecke, Eur. Phys. J. B, 1999, 8(1): 99
CrossRef
ADS
Google scholar
|
[32] |
V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Phys. Rev. E, 2004, 70(4): 046702
CrossRef
ADS
Google scholar
|
[33] |
A. Cristea, G. Gonnella, A. Lamura, and V. Sofonea, Comm. Comp. Phys., 2010, 7(2): 350
|
[34] |
R. Zhang and H. Chen, Phys. Rev. E, 2003, 67(6): 066711
CrossRef
ADS
Google scholar
|
[35] |
P. Yuan and L. Schaefer, J. Fluid Eng., 2006, 128(1): 142
CrossRef
ADS
Google scholar
|
[36] |
G. Gonnella, A. Lamura, A. Piscitelli, and A. Tiribocchi, Phys. Rev. E, 2010, 82(4): 046302
CrossRef
ADS
Google scholar
|
[37] |
G. Gonnella, A. Lamura, and A. Tiribocchi, Phil. Trans. R. Soc. A, 2011, 369(1945): 2592
|
[38] |
A. Márkus and G. Házi, Phys. Rev. E, 2011, 83(4): 046705
CrossRef
ADS
Google scholar
|
[39] |
M. Sbragaglia, R. Benzi, L. Biferale, X. Shan, H. Chen, and S. Succi, J. Fluid Mech., 2009, 628:
CrossRef
ADS
Google scholar
|
[40] |
T. Seta, K. Kono, and S. Chen, Int. J. Mod. Phys. B, 2003, 17(1-2): 169
CrossRef
ADS
Google scholar
|
[41] |
G. Gonnella, A. Lamura, and V. Sofonea, Phys. Rev. E, 2007, 76(3): 036703
CrossRef
ADS
Google scholar
|
[42] |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E, 2011, 84(4): 046715
CrossRef
ADS
Google scholar
|
[43] |
Y. Gan, A. Xu, G. Zhang, P. Zhang, and Y. Li, Europhys. Lett., 2012, 97(4): 44002
CrossRef
ADS
Google scholar
|
[44] |
H. Huang, D. T. Thorne, M. G. Schaap, and M. C. Sukop, Phys. Rev. E, 2007, 76(6): 066701
CrossRef
ADS
Google scholar
|
[45] |
H. Huang, M. Krafczyk, and X. Lu, Phys. Rev. E, 2011, 84(4): 046710
CrossRef
ADS
Google scholar
|
[46] |
L. Zheng, B. Shi, and Z. Guo, Phys. Rev. E, 2008, 78(2): 026705
CrossRef
ADS
Google scholar
|
[47] |
M. Watari and M. Tsutahara, Phys. Rev. E, 2003, 67(3): 036306
CrossRef
ADS
Google scholar
|
[48] |
A. Onuki, Phys. Rev. Lett., 2005, 94(5): 054501
CrossRef
ADS
Google scholar
|
[49] |
A. Onuki, Phys. Rev. E, 2007, 75(3): 036304
CrossRef
ADS
Google scholar
|
[50] |
F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Europhys. Lett., 2010, 90(5): 54003
CrossRef
ADS
Google scholar
|
[51] |
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, London: Springer-Verlag, 1987
|
[52] |
C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, Bristol: Adam Hilger, 1991
CrossRef
ADS
Google scholar
|
[53] |
J. P. Boyd, Chebyshev and Fourier Spectral Methods, New York: Dover Publications, 2000
|
[54] |
S. Orszag, Phys. Rev. Lett., 1971, 26(18): 1100
CrossRef
ADS
Google scholar
|
[55] |
H. Hadwiger, Math. Z., 1959, 71: 124
CrossRef
ADS
Google scholar
|
[56] |
G. Gonnella1, A. Lamura, and A. Piscitelli, J. Phys. A, 2008, 41(10): 105001
|
[57] |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E, 2011, 83(5): 056704
CrossRef
ADS
Google scholar
|
[58] |
L. F. Wang, W. H. Ye, Z. F. Fan, and Y. J. Li, Europhys. Lett., 2010, 90(1): 15001
CrossRef
ADS
Google scholar
|
[59] |
W. H. Ye, L. F. Wang, and X. T. He, Phys. Plasmas, 2010, 17(12): 122704
CrossRef
ADS
Google scholar
|
[60] |
W. H. Ye, L. F. Wang, C. Xue, Z. F. Fan, and X. T. He, Phys. Plasmas, 2011, 18(2): 022704
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |