Nuclear magnetic resonance studies of vortices in high temperature superconductors

A. M. Mounce, S. Oh, W. P. Halperin

PDF(661 KB)
PDF(661 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (4) : 450-462. DOI: 10.1007/s11467-011-0237-5
REVIEW ARTICLE
REVIEW ARTICLE

Nuclear magnetic resonance studies of vortices in high temperature superconductors

Author information +
History +

Abstract

The distinct distribution of local magnetic fields due to superconducting vortices can be detected with nuclear magnetic resonance (NMR) and used to investigate vortices and related physical properties of extreme type II superconductivity. This review summarizes work on high temperature superconductors (HTS) including cuprates and pnictide materials. Recent experimental results are presented which reveal the nature of vortex matter and novel electronic states. For example, the NMR spectrum has been found to provide a sharp indication of the vortex melting transition. In the vortex solid a frequency dependent spin–lattice relaxation has been reported in cuprates, including YBa2Cu3O7-x, Bi2SrCa2Cu2O8+δ, and Tl2Ba2CuO6+δ. These results have initiated a new spectroscopy via Doppler shifted nodal quasiparticles for the investigation of vortices. At very high magnetic fields this approach is a promising method for the study of vortex core excitations. These measurements have been used to quantify an induced spin density wave near the vortex cores in Bi2SrCa2Cu2O8+δ. Although the cuprates have a different superconducting order parameter than the iron arsenide superconductors there are, nonetheless, some striking similarities between them regarding vortex dynamics and frequency dependent relaxation.

Keywords

nuclear magnetic resonance (NMR) / superconductor / vortex / Doppler effect

Cite this article

Download citation ▾
A. M. Mounce, S. Oh, W. P. Halperin. Nuclear magnetic resonance studies of vortices in high temperature superconductors. Front. Phys., 2011, 6(4): 450‒462 https://doi.org/10.1007/s11467-011-0237-5

References

[1]
J. G. Bednorz and K. A. Müller, Z. Physik B, 1986, 64: 189
[2]
M. Lee, M. Yudkowsky, W. P. Halperin, J. Thiel, S. J. Hwu, and K. R. Poeppelmeier, Phys. Rev. B, 1987, 36(4): 2378
[3]
M. Takigawa, P. C. Hammel, R. H. Heffner, Z. Fisk, K. C. Ott, and J. D. Thompson, Phys. Rev. Lett., 1989, 63(17): 1865
[4]
M. Lee, Y. Q. Song, W. P. Halperin, L. M. Tonge, T. J. Marks, H. O. Marcy, and C. R. Kannewurf, Phys. Rev. B, 1989, 40(1): 817
[5]
E. H. Brandt, Phys. Rev. Lett., 1991, 66(24): 3213
[6]
V. F. Mitrović, <DissertationTip/>, Northwestern University, 2001
[7]
D. E. MacLaughlin, Solid State Physics, Academic Press, 1976: 1-69
[8]
V. F. Mitrović, E. E. Sigmund, M. Eschrig, H. N. Bachman, W. P. Halperin, A. P. Reyes, P. Kuhns, and W. G. Moulton, Nature, 2001, 413(6855): 501
[9]
C. H. Pennington and C. P. Shlichter, Physical Properties of High Temperature Superconductors Vol. II, edited by D. M. Ginsberg, Singapore: World Scientific, 1990: 269-367
[10]
K. Asayama, Y. Kitaoka, G. Q. Zheng, and K. Ishida, Progress in Nuclear Magnetic Resonance Spectroscopy, 1996, 28(3-4): 221
[11]
C. Berthier, M. Julien, M. Horvatić, and Y. Berthier, J. Phys. I France, 1996, 6: 2205
[12]
A. Rigamonti, F. Borsa, and P. Carrretta, Rep. Prog. Phys., 1998, 61(10): 1367
[13]
R. E. Walstedt, The NMR Probe of High-Tc Materials, Springer, 2008
[14]
N. J. Curro, Rep. Prog. Phys., 2009, 72(2): 026502
[15]
A. A. Abrikosov, Sov. Phys. JEPT, 1957, 5: 1174
[16]
F. London, Superfluids, Vol. 1, New York: Wiley, 1950
[17]
V. Mitrović, E. Sigmund, and W. Halperin, Physica C, 2003, 388-389: 629
[18]
G. Q. Zheng, H. Ozaki, Y. Kitaoka, P. Kuhns, A. P. Reyes, and W. G. Moulton, Phys. Rev. Lett., 2002, 88(7): 077003
[19]
K. Kakuyanagi, K. Kumagai, Y. Matsuda, and M. Hasegawa, Phys. Rev. Lett., 2003, 90(19): 197003
[20]
A. M. Mounce, S. Oh, S. Mukhopadhyay, W. P. Halperin, A. P. Reyes, P. L. Kuhns, K. Fujita, M. Ishikado, and S. Uchida, Phys. Rev. Lett., 2011, 106(5): 057003
[21]
B. Chen, P. Sengupta, W. P. Halperin, E. E. Sigmund, V. F. Mitrović, M. H. Lee, K. H. Kang, B. J. Mean, J. Y. Kim, and B. K. Cho, New J. Phys., 2006, 8(11): 274
[22]
Y. Q. Song, Physica C, 1995, 241(1-2): 187
[23]
G. Koutroulakis, V. F. Mitrović, M. Horvatić, C. Berthier, G. Lapertot, and J. Flouquet, Phys. Rev. Lett., 2008, 101(4): 047004
[24]
G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys., 1994, 66(4): 1125
[25]
W. K. Kwok, S. Fleshler, U. Welp, V. M. Vinokur, J. Downey, G. W. Crabtree, and M. M. Miller, Phys. Rev. Lett., 1992, 69(23): 3370
[26]
D. T. Fuchs, E. Zeldov, T. Tamegai, S. Ooi, M. Rappaport, and H. Shtrikman, Phys. Rev. Lett., 1998, 80(22): 4971
[27]
B. Chen, W. Halperin, P. Guptasarma, D. Hinks, V. F. Mitrović, A. Reyes, and P. Kuhns, Nat. Phys., 2007, 3(4): 239
[28]
H. N. Bachman, A. P. Reyes, V. F. Mitrović, W. P. Halperin, A. Kleinhammes, P. Kuhns, and W. G. Moulton, Phys. Rev. Lett., 1998, 80(8): 1726
[29]
S. Oh, A. M. Mounce, S. Mukhopadhyay, W. P. Halperin, A. B. Vorontsov, S. L. Bud’ko, P. C. Canfield, Y. Furukawa, A. P. Reyes, and P. L. Kuhns, Phys. Rev. B, 2011, 83(21): 214501
[30]
A. P. Reyes, X. P. Tang, H. N. Bachman, W. P. Halperin, J. A. Martindale, and P. C. Hammel, Phys. Rev. B, 1997, 55(22): R14737
[31]
L. I. Glazman and A. E. Koshelev, Phys. Rev. B, 1991, 43(4): 2835
[32]
S. K. Yip and J. A. Sauls, Phys. Rev. Lett., 1992, 69(15): 2264
[33]
G. E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz., 1993, 58: 457
[34]
K. A. Moler, D. J. Baar, J. S. Urbach, R. Liang, W. N. Hardy, and A. Kapitulnik, Phys. Rev. Lett., 1994, 73(20): 2744
[35]
K. A. Moler, D. L. Sisson, J. S. Urbach, M. R. Beasley, A. Kapitulnik, D. J. Baar, R. Liang, and W. N. Hardy, Phys. Rev. B, 1997, 55(6): 3954
[36]
H. Aubin, K. Behnia, S. Ooi, and T. Tamegai, Phys. Rev. Lett., 1999, 82(3): 624
[37]
M. Chiao, R. W. Hill, C. Lupien, L. Taillefer, P. Lambert, R. Gagnon, and P. Fournier, Phys. Rev. B, 2000, 62(5): 3554
[38]
M. Takigawa, M. Ichioka, and K. Machida, Phys. Rev. Lett., 1999, 83(15): 3057
[39]
N. J. Curro, C. Milling, J. Haase, and C. P. Slichter, Phys. Rev. B, 2000, 62(5): 3473
[40]
J. Haase, N. J. Curro, R. Stern, and C. P. Slichter, Phys. Rev. Lett., 1998, 81(7): 1489
[41]
R. Wortis, A. J. Berlinsky, and C. Kallin, Phys. Rev. B, 2000, 61(18): 12342
[42]
K. Kakuyanagi, J. Phys. Chem. Solids, 2002, 63: 2305
[43]
V. F. Mitrović, E. E. Sigmund, W. P. Halperin, A. P. Reyes, P. Kuhns, and W. G. Moulton, Phys. Rev. B, 2003, 67(22): 220503
[44]
S. Oh, A. M. Mounce, S. Mukhopadhyay, W. P. Halperin, A. B. Vorontsov, S. L. Bud’ko, P. C. Canfield, Y. Furukawa, A. P. Reyes, and P. L. Kuhns, arXiv:1109.3834v2, 2011
[45]
D. K. Morr, Phys. Rev. B, 2001, 63(21): 214509
[46]
D. Knapp, C. Kallin, A. J. Berlinsky, and R. Wortis, Phys. Rev. B, 2002, 66(14): 144508
[47]
R. E. Throckmorton and O. Vafek, Phys. Rev. B, 2010, 81(10): 104515
[48]
C. H. Recchia, J. A. Martindale, C. H. Pennington, W. L. Hults, and J. L. Smith, Phys. Rev. Lett., 1997, 78(18): 3543
[49]
T. Lu and R. Wortis, Phys. Rev. B, 2006, 74(13): 134516
[50]
R. E. Walstedt and S. W. Cheong, Phys. Rev. B, 1995, 51(5): 3163
[51]
J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J. C. Davis, Science, 2002, 295(5554): 466
[52]
T. Hanaguri, C. Lupien, Y. Kohsaka, D. H. Lee, M. Azuma, M. Takano, H. Takagi, and J. C. Davis, Nature, 2004, 430(7003): 1001
[53]
W. D. Wise, M. C. Boyer, K. Chatterjee, T. Kondo, T. Takeuchi, H. Ikuta, Y. Wang, and E. W. Hudson, Nat. Phys., 2008, 4(9): 696
[54]
B. Lake, G. Aeppli, K. N. Clausen, D. F. McMorrow, K. Lefmann, N. E. Hussey, N. Mangkorntong, M. Nohara, H. Takagi, T. E. Mason, and A. Schröder, Science, 2001, 291(5509): 1759
[55]
B. Lake, H. Ronnow, N. Christensen, G. Aeppli, K. Lefmann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, and T. E. Mason, Nature, 2002, 415(6869): 299
[56]
B. Khaykovich, Y. S. Lee, R. W. Erwin, S. H. Lee, S. Wakimoto, K. J. Thomas, M. A. Kastner, and R. J. Birgeneau, Phys. Rev. B, 2002, 66(1): 014528
[57]
S. Sachdev, Rev. Mod. Phys., 2003, 75(3): 913
[58]
C. Caroli, P. D. Gennes, and J. Matricon, Phys. Lett., 1964, 9(4): 307
[59]
J. D. Shore, M. Huang, A. T. Dorsey, and J. P. Sethna, Phys. Rev. Lett., 1989, 62(26): 3089
[60]
Y. Nakai, Y. Hayashi, K. Ishida, H. Sugawara, D. Kikuchi, and H. Sato, Physica B, 2008, 403(5-9): 1109
[61]
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc., 2008, 130(11): 3296
[62]
I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett., 2008, 101(5): 057003
[63]
Y. Bang, Phys. Rev. Lett., 2010, 104(21): 217001
[64]
Y. Bang, arXiv:1112.0142, 2011
[65]
G. E. Volovik, J. Phys. C, 1988, 21: L221
[66]
B. G. Silbernagel, M. Weger, and J. E. Wernick, Phys. Rev. Lett., 1966, 17(7): 384
[67]
B. G. Silbernagel, M. Weger, W. G. Clark, and J. H. Wernick, Phys. Rev., 1967, 153(2): 535
[68]
A. Z. Genack and A. G. Redfield, Phys. Rev. Lett., 1973, 31(19): 1204
[69]
A. Z. Genack and A. G. Redfield, Phys. Rev. B, 1975, 12(1): 78
[70]
R. Wortis, <DissertationTip/>, University of Illinois Champaign Urbana, 1998

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(661 KB)

Accesses

Citations

Detail

Sections
Recommended

/