Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity

Zheng-Yu Weng

PDF(447 KB)
PDF(447 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (4) : 370-378. DOI: 10.1007/s11467-011-0220-1
REVIEW ARTICLE
REVIEW ARTICLE

Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity

Author information +
History +

Abstract

In this article I give a pedagogical illustration of why the essential problem of high-Tc superconductivity in the cuprates is about how an antiferromagnetically ordered state can be turned into a short-range state by doping. I will start with half-filling where the antiferromagnetic ground state is accurately described by the Liang–Doucot–Anderson (LDA) wavefunction. Here the effect of the Fermi statistics becomes completely irrelevant due to the no double occupancy constraint. Upon doping, the statistical signs reemerge, albeit much reduced as compared to the original Fermi statistical signs. By precisely incorporating this altered statistical sign structure at finite doping, the LDA ground state can be recast into a short-range antiferromagnetic state. Superconducting phase coherence arises after the spin correlations become short-ranged, and the superconducting phase transition is controlled by spin excitations. I will stress that the pseudogap phenomenon naturally emerges as a crossover between the antiferromagnetic and superconducting phases. As a characteristic of non Fermi liquid, the mutual statistical interaction between the spin and charge degrees of freedom will reach a maximum in a high-temperature “strange metal phase” of the doped Mott insulator.

Keywords

Mott physics / high-Tc cuprates / ground state wavefunction / sign structure

Cite this article

Download citation ▾
Zheng-Yu Weng. Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity. Front. Phys., 2011, 6(4): 370‒378 https://doi.org/10.1007/s11467-011-0220-1

References

[1]
P. W. Anderson, Science, 1987, 235(4793): 1196
[2]
P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, J. Phys.: Condens. Matter, 2004, 16(24): R755, and references therein
[3]
For a review, see: B. Edegger, V. N. Muthukumar, and C. Gros, Adv. Phys., 2007, 56(6): 927
[4]
D. Vaknin, S. K. Sinha, D. E. Moncton, D. C. Johnston, J. M. Newsam, C. R. Safinya, and H. King, Phys. Rev. Lett., 1987, 58(26): 2802
[5]
A. Auerbach, Interacting Electrons and Quantum Magnetism, New York: Springer-Verlag, 1994
[6]
For a review, see: P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys., 2006, 78(1): 17
[7]
Z. Y. Weng, New J. Phys., 2011, 13: 103039; arXiv: 1105.3027, 2011, and references therein
[8]
S. Liang, B. Doucot, and P. W. Anderson, Phys. Rev. Lett., 1988, 61(3): 365
[9]
W. Marshall, Proc. R. Soc. Lond. A, 1955, 232(1188): 48
[10]
For a review, see: Z. Y. Weng, Int. J. Mod. Phys. B, 2007, 21: 773; arXiv:0704.2875, 2007
[11]
J. Zaanen and B. J. Overbosch, Phil. Trans. R. Soc. A, 2011, 369: 1599; arXiv:0911.4070, 2009
[12]
D. N. Sheng, Y. C. Chen, and Z. Y. Weng, Phys. Rev. Lett., 1996, 77(25): 5102
[13]
Z. Y. Weng, D. N. Sheng, Y.-C. Chen, and C. S. Ting, Phys. Rev. B, 1997, 55(6): 3894
[14]
K. Wu, Z. Y. Weng, and J. Zaanen, Phys. Rev. B, 2008, 77(15): 155102
[15]
J. W. Mei and Z. Y. Weng, Phys. Rev. B, 2010, 81(1): 014507
[16]
Y. J. Uemura, J. Phys.: Condens. Matter, 2004, 16(40): S4515
[17]
Y. J. Uemura, Physica B, 2006, 374-375: 1
[18]
T. Timusk and B. Statt, Rep. Prog. Phys., 1999, 62(1): 61
[19]
A. Damascelli, Z. Hussin, and Z. X. Shen, Rev. Mod. Phys., 2003, 75(2): 473
[20]
Z. Y. Weng and V. N. Muthukumar, Phys. Rev. B, 2002, 66(9): 094509
[21]
Z. Y. Weng and X. L. Qi, Phys. Rev. B, 2006, 74(14): 144518
[22]
Z. A. Xu, N. P. Ong, Y. Wang, T. Kakeshita, and S. Uchida, Nature, 2000, 406(6795): 486
[23]
Y. Wang, Z. A. Xu, T. Kakheshita, S. Uchida, S. Ono, Y. Ando, and N. Ong, Phys. Rev. B, 2001, 64(22): 224519
[24]
P. Ye, C. S. Tian, X. L. Qi, and Z. Y. Weng, Phys. Rev. Lett., 2011, 106(14): 147002
[25]
P. Ye, C. S. Tian, X. L. Qi, and Z. Y. Weng, Nucl. Phys. B, 2012, 854[FS]: 815; arXiv:1106.1223, 2011
[26]
S. P. Kou, X. L. Qi, and Z. Y. Weng, Phys. Rev. B, 2005, 71(23): 235102
[27]
V. J. Emery and S. A. Kivelson, Nature, 1995, 374(6521): 434
[28]
Z. Těsanović, Nat. Phys., 2008, 4: 408
[29]
J. W. Mei, S. Kawasaki, G. Q. Zheng, Z. Y. Weng, and X. G. Wen, arXiv:1109.0406, 2011
[30]
T. C. Ribeiro and X. G. Wen, Phys. Rev. B, 2006, 74(15): 155113
[31]
T. C. Ribeiro and X. G. Wen, Phys. Rev. Lett., 2005, 95(5): 057001
[32]
Y. Qi and S. Sachdev, Phys. Rev. B, 2010, 81(11): 115129
[33]
Z. C. Gu and Z. Y. Weng, Phys. Rev. B, 2007, 76(2): 024501
[34]
F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, Supercond. Sci. Technol., 1988, 1(1): 36
[35]
G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Commun., 1987, 63(11): 973
[36]
P. W. Anderson, arXiv:1011.2736, 2010

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(447 KB)

Accesses

Citations

Detail

Sections
Recommended

/