Theory of superfluidity and drag force in the one-dimensional Bose gas

Alexander Yu. Cherny, Jean-Sébastien Caux, Joachim Brand

PDF(703 KB)
PDF(703 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (1) : 54-71. DOI: 10.1007/s11467-011-0211-2
REVIEW ARTICLE
REVIEW ARTICLE

Theory of superfluidity and drag force in the one-dimensional Bose gas

Author information +
History +

Abstract

The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal impurities. Recently, experimental tests with ultracold atoms have begun and quantitative predictions for the drag force experienced by moving obstacles have become available. This topical review discusses the drag force obtained from linear response theory in relation to Landau’s criterion of superfluidity. Based upon improved analytical and numerical understanding of the dynamical structure factor, results for different obstacle potentials are obtained, including single impurities, optical lattices and random potentials generated from speckle patterns. The dynamical breakdown of superfluidity in random potentials is discussed in relation to Anderson localization and the predicted superfluid–insulator transition in these systems.

Keywords

Lieb–Liniger model / Tonks–Girardeau gas / Luttinger liquid / drag force / superfluidity / dynamical structure factor

Cite this article

Download citation ▾
Alexander Yu. Cherny, Jean-Sébastien Caux, Joachim Brand. Theory of superfluidity and drag force in the one-dimensional Bose gas. Front. Phys., 2012, 7(1): 54‒71 https://doi.org/10.1007/s11467-011-0211-2

References

[1]
J. Leggett, Rev. Mod. Phys., 1999, 71(2): S318
CrossRef ADS Google scholar
[2]
A. J. Leggett, Rev. Mod. Phys., 2001, 73(2): 307
CrossRef ADS Google scholar
[3]
É. B. Sonin, Sov. Phys. Usp., 1982, 25: 409
CrossRef ADS Google scholar
[4]
P. Nozières and D. Pines, The Theory of Quantum Liquids: Superfluid Bose Liquids, Redwood City: Addison-Wesley, 1990
[5]
L. Pitaevskii and S. Stringari, Bose–Einstein Condensation, Oxford: Clarendon, 2003
[6]
A. J. Leggett, Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems, Oxford: Oxford University Press, 2006
[7]
N. N. Bogoliubov, Quasi-Expectation Values in Problems of Statistical Machanics, New York: Gordon and Breach, 1961
[8]
P. C. Hohenberg, Phys. Rev., 1967, 158(2): 383
CrossRef ADS Google scholar
[9]
G. B. Hess and W. M. Fairbank, Phys. Rev. Lett., 1967, 19: 216
CrossRef ADS Google scholar
[10]
A. J. Leggett, Phys. Fenn., 1973, 8: 125
[11]
A. G. Sykes, M. J. Davis, and D. C. Roberts, Phys. Rev. Lett., 2009, 103(8): 085302
CrossRef ADS Google scholar
[12]
S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M. Stamper-Kurn, Phys. Rev. Lett., 2005, 95(14): 143201
CrossRef ADS Google scholar
[13]
C. Ryu, M. F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, and W. D. Phillips, Phys. Rev. Lett., 2007, 99(26): 260401
CrossRef ADS Google scholar
[14]
S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, Phys. Rev. A, 2007, 76(6): 061404
CrossRef ADS Google scholar
[15]
S. Palzer, C. Zipkes, C. Sias, and M. Köhl, Phys. Rev. Lett., 2009, 103(15): 150601
CrossRef ADS Google scholar
[16]
J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, F. Minardi, A. Kantian, and T. Giamarchi, arXiv:1106.0828, 2011
[17]
L. Fallani, L. De Sarlo, J. E. Lye, M. Modugno, R. Saers, C. Fort, and M. Inguscio, Phys. Rev. Lett., 2004, 93(14): 140406
CrossRef ADS Google scholar
[18]
C. D. Fertig, K. M. O’Hara, J. H. Huckans, S. L. Rolston, W. D. Phillips, and J. V. Porto, Phys. Rev. Lett., 2005, 94(12): 120403
CrossRef ADS Google scholar
[19]
J. Mun, P. Medley, G. K. Campbell, L. G. Marcassa, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett., 2007, 99(15): 150604
CrossRef ADS Google scholar
[20]
J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Nature, 2008, 453(7197): 891
CrossRef ADS Google scholar
[21]
G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature, 2008, 453(7197): 895
CrossRef ADS Google scholar
[22]
B. Deissler, M. Zaccanti, G. Roati, C. D’Errico, M. Fattori, M. Modugno, G. Modugno, and M. Inguscio, Nat. Phys., 2010, 6(5): 354
CrossRef ADS Google scholar
[23]
V. A. Kashurnikov, A. I. Podlivaev, N. V. Prokof’ev, and B. V. Svistunov, Phys. Rev. B, 1996, 53(19): 13091
CrossRef ADS Google scholar
[24]
E. H. Lieb and W. Liniger, Phys. Rev., 1963, 130(4): 1605
CrossRef ADS Google scholar
[25]
L. Tonks, Phys. Rev., 1936, 50(10): 955
CrossRef ADS Google scholar
[26]
M. Girardeau, J. Math. Phys., 1960, 1(6): 516
CrossRef ADS Google scholar
[27]
M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, arXiv:1101.5337, 2011, to appear in Rev. Mod. Phys.
[28]
In this paper we use the linear momentum and coordinates and velocities. The angular momentum and angle and angular velocity can easily be written as Lz = pL/(2π), ϕ = 2πx/L, ωz = 2πv/L, respectively.
[29]
E. H. Lieb, Phys. Rev., 1963, 130(4): 1616
CrossRef ADS Google scholar
[30]
F. D. M. Haldane, Phys. Rev. Lett., 1981, 47: 1840, note a misprint in Eq. (7) for the density-density correlator: the sign before the second therm should be minus.
[31]
C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett., 1999, 83(13): 2502
CrossRef ADS Google scholar
[32]
A. Y. Cherny, J. S. Caux, and J. Brand, Phys. Rev. A, 2009, 80(4): 043604
CrossRef ADS Google scholar
[33]
M. Ueda and A. J. Leggett, Phys. Rev. Lett., 1999, 83(8): 1489
CrossRef ADS Google scholar
[34]
M. A. Cazalilla, J. Phys. B, 2004, 37(7): S1
CrossRef ADS Google scholar
[35]
H. P. Büchler, V. B. Geshkenbein, and G. Blatter, Phys. Rev. Lett., 2001, 87(10): 100403
CrossRef ADS Google scholar
[36]
R. Citro, A. Minguzzi, and F. W. J. Hekking, Phys. Rev. B, 2009, 79(17): 172505
CrossRef ADS Google scholar
[37]
T. Cheon and T. Shigehara, Phys. Rev. Lett., 1999, 82(12): 2536
CrossRef ADS Google scholar
[38]
A. Y. Cherny, J. S. Caux, J. Brand, and J. Sib, Fed. Univ. Math. Phys., 2010, 3: 289
[39]
G. E. Astrakharchik and L. P. Pitaevskii, Phys. Rev. A, 2004, 70: 013608, note misprints in Eq. (20) for the drag force in this paper.
[40]
P. C. Hohenberg and P. M. Platzman, Phys. Rev., 1966, 152(1): 198
CrossRef ADS Google scholar
[41]
J. Brand and A. Y. Cherny, Phys. Rev. A, 2005, 72(3): 033619
CrossRef ADS Google scholar
[42]
A. Y. Cherny and J. Brand, Phys. Rev. A, 2006, 73(2): 023612
CrossRef ADS Google scholar
[43]
N. N. Bogoliubov, J. Phys. USSR, 1947, 11: 23, reprinted in Ref. [49]
[44]
N. N. Bogoliubov, Lectures on Quantum Statistics, Vol. 2, New York: Gordon and Breach, 1970
[45]
A. Y. Cherny and J. Brand, Phys. Rev. A, 2009, 79(4): 043607
CrossRef ADS Google scholar
[46]
D. L. Kovrizhin and L. A. Maksimov, Phys. Lett. A, 2001, 282(6): 421
CrossRef ADS Google scholar
[47]
M. D. Girardeau and M. Olshanii, Phys. Rev. A, 2004, 70(2): 023608
CrossRef ADS Google scholar
[48]
B. E. Granger and D. Blume, Phys. Rev. Lett., 2004, 92(13): 1733202
CrossRef ADS Google scholar
[49]
D. Pines (Ed.), The Many-Body Problem, New York: W. A. Benjamin, 1990
[50]
M. Gattobigio, J. Phys. B, 2006, 39(10): S191
CrossRef ADS Google scholar
[51]
V. N. Popov, Theor. Math. Phys., 1972, 11: 565
CrossRef ADS Google scholar
[52]
V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, Dordrecht: Reidel, 1983
CrossRef ADS Google scholar
[53]
V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge: Cambridge University Press, 1993, see Section XVIII.2
[54]
A. D. Mironov and A. V. Zabrodin, Phys. Rev. Lett., 1991, 66(5): 534
CrossRef ADS Google scholar
[55]
A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bozonization and Strongly Correlated Systems, Cambridge: Cambridge University Press, 1998
[56]
G. E. Astrakharchik, Quantum Monte Carlo Study of Ultracold Gases, <DissertationTip/>, Universit‘a degli Studi di Trento, 2004, Section 1.7.4
[57]
N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, and V. Terras, J. Stat. Mech.: Th. Exp., 2009, 2009: P04003
[58]
A. Shashi, L. I. Glazman, J. S. Caux, and A. Imambekov, arXiv:1010.2268, 2010
[59]
A. Shashi, L. I. Glazman, J. S. Caux, and A. Imambekov, Phys. Rev. B, 2011, 84(4): 045408
CrossRef ADS Google scholar
[60]
J. S. Caux and P. Calabrese, Phys. Rev. A, 2006, 74(3): 031605
CrossRef ADS Google scholar
[61]
J. S. Caux, J. Math. Phys., 2009, 50(9): 095214
CrossRef ADS Google scholar
[62]
M. Gaudin, La fonction d’onde de Bethe., Collection du Commissariat a l’Energie Atomique. Serie Scientifique. Paris etc.: Masson. XVI, p330, 1983
[63]
V. E. Korepin, Commun. Math. Phys., 1982, 86(3): 391
CrossRef ADS Google scholar
[64]
N. A. Slavnov, Teor. Mat. Fiz., 1989, 79: 232
[65]
N. A. Slavnov, Teor. Mat. Fiz., 1990, 82: 273
[66]
A. Y. Cherny and J. Brand, J. Phys.: Conf. Ser., 2008, 129: 012051
CrossRef ADS Google scholar
[67]
A. Imambekov and L. I. Glazman, Phys. Rev. Lett., 2008, 100(20): 206805
CrossRef ADS Google scholar
[68]
Note that the field theory predictions of [67] actually include a singularity also for ω>ω+(k), with a universal shoulder ratio. We neglect this here since it gives only a small correction to the results.
[69]
We slightly change the notations: our ω±and±μ±correspond to ω1,2 and μ1,2 in Ref. [67], respectively. We also denote the density of particles n and the Fermi wavevector for quasiparticles q0 instead of D and q used in Refs. [53, 67], respectively.
[70]
V. N. Golovach, A. Minguzzi, and L. I. Glazman, Phys. Rev. A, 2009, 80(4): 043611
CrossRef ADS Google scholar
[71]
Y. Kagan, N. V. Prokof’ev, and B. V. Svistunov, Phys. Rev. A, 2000, 61(4): 045601
CrossRef ADS Google scholar
[72]
J. M. Ziman, Principles of the Theory of Solids, Cambridge: Cambridge University Press, 1972
[73]
A. Trombettoni and A. Smerzi, Phys. Rev. Lett., 2001, 86(11): 2353
CrossRef ADS Google scholar
[74]
E. Altman, A. Polkovnikov, E. Demler, B. I. Halperin, and M. D. Lukin, Phys. Rev. Lett., 2005, 95(2): 020402
CrossRef ADS Google scholar
[75]
A. Polkovnikov, E. Altman, E. Demler, B. Halperin, and M. D. Lukin, Phys. Rev. A, 2005, 71(6): 063613
CrossRef ADS Google scholar
[76]
J. Ruostekoski and L. Isella, Phys. Rev. Lett., 2005, 95(11): 110403
CrossRef ADS Google scholar
[77]
A. R. Kolovsky, New J. Phys., 2006, 8(9): 197
CrossRef ADS Google scholar
[78]
I. Danshita and C. W. Clark, Phys. Rev. Lett., 2009, 102(3): 030407
CrossRef ADS Google scholar
[79]
P. W. Anderson, Phys. Rev., 1958, 109(5): 1492
CrossRef ADS Google scholar
[80]
L. Sanchez-Palencia and M. Lewenstein, Nat. Phys., 2010, 6(2): 87
CrossRef ADS Google scholar
[81]
G. Modugno, Rep. Prog. Phys., 2010, 73(10): 102401
CrossRef ADS Google scholar
[82]
L. Sanchez-Palencia, Phys. Rev. A, 2006, 74(5): 053625
CrossRef ADS Google scholar
[83]
L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, G. V. Shlyapnikov, and A. Aspect, Phys. Rev. Lett., 2007, 98(21): 210401
CrossRef ADS Google scholar
[84]
P. Lugan, D. Clément, P. Bouyer, A. Aspect, M. Lewenstein, and L. Sanchez-Palencia, Phys. Rev. Lett., 2007, 98(17): 170403
CrossRef ADS Google scholar
[85]
P. Lugan, D. Clément, P. Bouyer, A. Aspect, and L. Sanchez-Palencia, Phys. Rev. Lett., 2007, 99(18): 180402
CrossRef ADS Google scholar
[86]
T. Paul, P. Schlagheck, P. Leboeuf, and N. Pavloff, Phys. Rev. Lett., 2007, 98(21): 210602
CrossRef ADS Google scholar
[87]
A. S. Pikovsky and D. L. Shepelyansky, Phys. Rev. Lett., 2008, 100(9): 094101
CrossRef ADS Google scholar
[88]
G. Kopidakis, S. Komineas, S. Flach, and S. Aubry, Phys. Rev. Lett., 2008, 100(8): 084103
CrossRef ADS Google scholar
[89]
G. M. Falco, T. Nattermann, and V. L. Pokrovsky, Phys. Rev. B, 2009, 80(10): 104515
CrossRef ADS Google scholar
[90]
I. L. Aleiner, B. L. Altshuler, and G. V. Shlyapnikov, Nat. Phys., 2010, 6(11): 900
CrossRef ADS Google scholar
[91]
J. Radić, V. Bačić, D. Jukić, M. Segev, and H. Buljan, Phys. Rev. A, 2010, 81(6): 063639
CrossRef ADS Google scholar
[92]
J. W. Goodman, Statistical Properties of Laser Speckle Patterns, in: Laser Speckle and Related Phenomena, edited by J.-C. Dainty, Berlin: Springer-Verlag, 1975, pp 9–75
CrossRef ADS Google scholar
[93]
D. Clément, A. F. Varón, J. A. Retter, L. Sanchez-Palencia, A. Aspect, and P. Bouyer, New J. Phys., 2006, 8(8): 165
CrossRef ADS Google scholar
[94]
D. Pines and P. Nozières, The Theory of Quantum Liquids: Normal Fermi Liquids, New York: W. A. Benjamin, 1966, see Eq. (2.69)
[95]
E. Timmermans and R. Côté, Phys. Rev. Lett., 1998, 80(16): 3419
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(703 KB)

Accesses

Citations

Detail

Sections
Recommended

/