Electrodynamics of Abrikosov vortices: the field theoretical formulation
Aron J. Beekman, Jan Zaanen
Electrodynamics of Abrikosov vortices: the field theoretical formulation
Electrodynamic phenomena related to vortices in superconductors have been studied since their prediction by Abrikosov, and seem to hold no fundamental mysteries. However, most of the effects are treated separately, with no guiding principles.We demonstrate that the relativistic vortex worldsheet in spacetime is the object that naturally conveys all electric and magnetic information, for which we obtain simple and concise equations. Breaking Lorentz invariance leads to down-to-earth Abrikosov vortices, and special limits of these equations include for instance dynamic Meissner screening and the AC Josephson relation. On a deeper level, we explore the electrodynamics of two-form sources in the absence of electric monopoles, in which the electromagnetic field strength itself acquires the characteristics of a gauge field. This novel framework leaves room for unexpected surprises.
Abrikosov vortex / electromagnetism / Maxwell equations / differential geometry / multivalued fields
[1] |
A. A. Abrikosov, Soviet J. Exp. & Theor. Phys., 1957, 5: 1174
|
[2] |
H. Rogalla and P. H. Kes (Eds.), 100 Years of Superconductivity, New York: CRC Press, 2011
|
[3] |
D. R. Nelson, Phys. Rev. Lett., 1988, 60(19): 1973
CrossRef
ADS
Google scholar
|
[4] |
B. Rosenstein and D. P. Li, Rev. Mod. Phys., 2010, 82(1): 109
CrossRef
ADS
Google scholar
|
[5] |
G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys., 1994, 66(4): 1125
CrossRef
ADS
Google scholar
|
[6] |
L. N. Bulaevskii and E. M. Chudnovsky, Phys. Rev. Lett., 2006, 97(19): 197002
CrossRef
ADS
Google scholar
|
[7] |
L. N. Bulaevskii and A. E. Koshelev, Phys. Rev. Lett., 2006, 97(26): 267001
CrossRef
ADS
Google scholar
|
[8] |
L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, No. 8 in Course of Theoretical Physics, Oxford: Pergamon, 1960
|
[9] |
A. J. Beekman and J. Zaanen, Type-II Bose–Mott insulators (in preparation).
|
[10] |
M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton, NJ: Princeton University Press, 1992
|
[11] |
J. Polchinski, String Theory, Vol. I+II, Cambridge: Cambridge University Press, 1998
|
[12] |
H. B. Nielsen and P. Olesen, Nucl. Phys. B, 1973, 61: 45
CrossRef
ADS
Google scholar
|
[13] |
J. Schwinger, Particles, Sources and Fields, Reading, MA: Addison-Wesley, 1970
|
[14] |
H. Kleinert, Gauge Fields in Condensed Matter, Vol. I, Superflow and Vortex Lines, Singapore: World Scientific, 1989
|
[15] |
M. Tinkham, Introduction to Superconductivity, 2nd Ed., New York: McGraw-Hill, 1996
|
[16] |
A. J. Beekman, D. Sadri, and J. Zaanen, New J. Phys., 2011, 13: 033004
CrossRef
ADS
Google scholar
|
[17] |
B. D. Josephson, Phys. Lett., 4965, 16(3): 242
CrossRef
ADS
Google scholar
|
[18] |
S. Savel’ev, V. A. Yampol’skii, A. L. Rakhmanov, and F. Nori, Rep. Prog. Phys., 2010, 73(2): 026501
CrossRef
ADS
Google scholar
|
[19] |
R. G. Mints and I. B. Snapiro, Phys. Rev. B, 1995, 51(5): 3054
CrossRef
ADS
Google scholar
|
[20] |
K. F. Warnick and P. Russer, Turkish J. Electr. Eng. & Comp. Sci., 2006, 14(1): 153
|
/
〈 | 〉 |