Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties

, , , ,

PDF(634 KB)
PDF(634 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (2) : 208-217. DOI: 10.1007/s11467-011-0199-7
REVIEW ARTICLE
REVIEW ARTICLE

Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties

Author information +
History +

Abstract

Nanostructured topological insulator materials such as ultrathin films, nanoplates, nanowires, and nanoribbons are attracting much attention for fundamental research as well as potential applications in low-energy dissipation electronics, spintronics, thermoelectrics, magnetoelectrics, and quantum computing due to their extremely large surface-to-volume ratios and exotic metallic edge/surface states. Layered Bi2Se3 and Bi2Te3 serve as reference topological insulator materials with a large nontrivial bulk gap up to 0.3 eV (equivalent to 3600 K) and simple single-Dirac-cone surface states. In this mini-review, we present an overview of recent advances in nanostructured topological insulator Bi2Se3 and Bi3Te3 from the viewpoints of controlled synthesis and physical properties. We summarize our recent achievements in the vapor-phase synthesis and structural characterization of nanostructured topological insulator Bi2Se3 and Bi2Te3, such as nanoribbons and ultrathin nanoplates.We also demonstrate the evolution of Raman spectra with the number of few-layer topological insulators, as well as the transport measurements that have succeeded in accessing the surface conductance and surface state manipulations in the device of topological insulator nanostructures.

Keywords

topological insulator / nanostructure / synthesis / Raman / transport / surface state manipulation

Cite this article

Download citation ▾
, , , , . Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties. Front. Phys., 2012, 7(2): 208‒217 https://doi.org/10.1007/s11467-011-0199-7

References

[1]
H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys., 2009, 5: 438
[2]
J. E. Moore, Nat. Mater., 2010, 464: 194
[3]
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys., 2010, 82: 3045
[4]
Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science, 2009, 325: 178
[5]
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. BansilD. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys., 2009, 5: 398
[6]
J. G. Checkelsky, Y. S. Hor, M. H. Liu, D. X. Qu, R. J. Cava, and N. P. Ong, Phys. Rev. Lett., 2009, 103: 406601
[7]
D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett., 2009, 103: 146401
[8]
A. A. Taskin and Y. Ando, Phys. Rev. B, 2009, 80: 085303
[9]
J. G. Analytis, J. H. Chu, Y. Chen, F. Corredor, R. D. Mc- Donald, Z. X. Shen, and I. R. Fisher, Phys. Rev. B, 2010, 81: 205407
[10]
D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature, 2008, 452: 970
[11]
Z. Y. Wang, T. Lin, P. Wei, X. F. Liu, R. Dumas, K. Liu, and J. Shi, Appl. Phys. Lett., 2010, 97: 042112
[12]
Y. Zhang, C. Z. Chang, K. He, L. L. Wang, X. Chen, J. F. Jia, X. C. Ma, and Q. K. Xue, Appl. Phys. Lett., 2010, 97: 194102
[13]
H. L. Peng, K. J. Lai,D. S. Kong, S. Meister, Y. L. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, Nat. Mater., 2010, 9: 225
[14]
J. J. Cha, J. R. Williams, D. S. Kong, S. Meister, H. L. Peng, A. J. Bestwick, P. Gallagher, D. Goldhaber-Gordon, and Y. Cui, Nano Lett., 2010, 10: 1076
[15]
F. X. Xiu, L. A. He, Y. Wang, L. N. Cheng, L. T. Chang, M. R. Lang, G. A. Huang, X. F. Kou, Y. Zhou, X. W. Jiang, Z. G. Chen, J. Zou, A. Shailos, and K. L. Wang, Nat. Nanotechnol., 2011, 6: 216
[16]
H. Steinberg, D. R. Gardner, Y. S. Lee, and P. Jarillo- Herrero, Nano Lett., 2010, 10: 5032
[17]
D. S. Kong, W. H. Dang, J. J. Cha, H. Li, S. Meister, H. L. Peng, Z. F. Liu, and Y. Cui, Nano Lett., 2010, 10: 2245
[18]
J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett., 2010, 105: 4
[19]
G. H. Zhang, H. J. Qin, J. Chen, X. Y. He, L. Lu, Y. Q. Li, and K. H. Wu, Adv. Funct. Mater., 2011, 21: 2351
[20]
V. Goyal, D. Teweldebrhan, and A. A. Balandin, Appl. Phys. Lett., 2010, 97: 133117
[21]
D. Teweldebrhan, V. Goyal, and A. A. Balandin, Nano Lett., 2010, 10: 1209
[22]
S. S. Hong, W. Kundhikanjana, J. J. Cha, K. J. Lai, D. S. Kong, S. Meister,M. A. Kelly, Z. X. Shen, and Y. Cui, Nano Lett., 2010, 10: 3118
[23]
J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E.M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Science, 2011, 331: 568
[24]
D. S. Kong, J. C. Randel, H. L. Peng, J. J. Cha, S. Meister, K. J. Lai, Y. L. Chen, Z. X. Shen, H. C. Manoharan, and Y. Cui, Nano Lett., 2010, 10: 329
[25]
Y. F. Lin, H. W. Chang, S. Y. Lu, and C. W. Liu, J. Phys. Chem. C, 2007, 111: 18538
[26]
Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, Nat. Phys., 2010, 6: 584
[27]
H. W. Liu, H. T. Yuan, N. Fukui, L. Zhang, J. F. Jia, Y. Iwasa, M. W. Chen, T. Hashizume, T. Sakurai, and Q. K. Xue, Cryst. Growth Des., 2010, 10: 4491
[28]
H. M. Cui, H. Liu, J. Y. Wang, X. Li, F. Han, and R. I. Boughton, J. Cryst. Growth, 2004, 271: 456
[29]
S. H. Yu, J. Yang, Y. S. Wu, Z. H. Han, J. Lu, Y. Xie, and Y. T. Qian, J. Mater. Chem., 1998, 8: 1949
[30]
Y. Y. Li, G. A. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, Adv. Mater. (Deerfield Beach Fla.), 2010, 22: 4002
[31]
P. Cheng, C. L. Song, T. Zhang, Y. Y. Zhang, Y. L. Wang, J. F. Jia, J. Wang, Y. Y. Wang, B. F. Zhu, X. Chen, X. C. Ma, K. He, L. L. Wang, X. Dai, Z. Fang, X. C. Xie, X. L. Qi, C. X. Liu, S. C. Zhang, and Q. K. Xue, Phys. Rev. Lett., 2010, 105: 076801
[32]
W. H. Dang, H. L. Peng, H. Li, P. Wang, and Z. F. Liu, Nano Lett., 2010, 10: 2870
[33]
C. M. Lieber, MRS Bull., 2003, 28: 486
[34]
P. D. Yang, MRS Bull., 2005, 30: 85
[35]
P. Gao and Z. L. Wang, J. Phys. Chem. B, 2002, 106: 12653
[36]
M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Appl. Phys. Lett., 2002, 80: 1058
[37]
S. Meister, H. L. Peng, K. McIlwrath, K. Jarausch, X. F. Zhang, and Y. Cui, Nano Lett., 2006, 6: 1514
[38]
J. S. Lee, S. Brittman, D. Yu, and H. Park, J. Am. Chem. Soc., 2008, 130: 6252
[39]
H. L. Peng, S. Meister, C. K. Chan, X. F. Zhang, and Y. Cui, Nano Lett., 2006, 7: 199
[40]
H. L. Peng, C. Xie, D. T. Schoen, and Y. Cui, Nano Lett., 2008, 8: 1511
[41]
A. Koma, Thin Solid Films, 1992, 216: 72
[42]
A. Koma, J. Cryst. Growth, 1999, 201: 236
[43]
H. D. Li, Z. Y. Wang, X. Kan, X. Guo, H. T. He, Z. Wang, J. N. Wang, T. L. Wong, N. Wang, and M. H. Xie, New J. Phys., 2010, 12: 11
[44]
G. H. Zhang, H. J. Qin, J. Teng, J. D. Guo, Q. L. Guo, X. Dai, Z. Fang, and K. H. Wu, Appl. Phys. Lett., 2009, 95: 053114
[45]
A. K. Geim andK. S.Novoselov, Nat. Mater., 2007, 6: 183
[46]
C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, and K. Ensslin, Front. Phys., 2011, 6(3): 271
[47]
S. Miao, J. Zhu, X. Zhang, and Z. Y. Cheng, Phys. Rev. B, 2001, 65: 052101
[48]
T. Kehagias, P. Komninou, G. Nouet, P. Ruterana, and T. Karakostas, Phys. Rev. B, 2001, 64: 195329
[49]
C. L. Song, Y. L. Wang, Y. P. Jiang, Y. Zhang, C. Z. Chang, L. L.Wang, K. He, X. Chen, J. F. Jia, Y. Y. Wang, Z. Fang, X. Dai, X. C. Xie, X. L. Qi, S. C. Zhang, Q. K. Xue, and X. C. Ma, Appl. Phys. Lett., 2010, 97: 143118
[50]
M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Nano Lett., 2010, 10: 751
[51]
W. Richter and C. R. Becker, Phys. Status Solidi B, 1977, 84: 619
[52]
Y. I. Yuzyuk, R. S. Katiyar, V. A. Alyoshin, I. N. Zakharchenko, D. A. Markov, and E. V. Sviridov, Phys. Rev. B, 2003, 68: 104104
[53]
P. S. Dobal, S. Bhaskar, S. B. Majumder, and R. S. Katiyar, J. Appl. Phys., 1999, 86: 828
[54]
G. Wedler, C. M. Schneider, A. Trampert, and R. Koch, Phys. Rev. Lett., 2004, 93: 236101
[55]
A. Fillon, G. Abadias, A. Michel, C. Jaouen, and P. Villechaise, Phys. Rev. Lett., 2010, 104: 096101
[56]
G. Springholz and K. Wiesauer, Phys. Rev. Lett., 2002, 88: 015507

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(634 KB)

Accesses

Citations

Detail

Sections
Recommended

/