Entropy majorization, thermal adiabatic theorem, and quantum phase transitions

Shi-jian Gu

Front. Phys. ›› 2012, Vol. 7 ›› Issue (2) : 244 -251.

PDF (265KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (2) : 244 -251. DOI: 10.1007/s11467-011-0198-8
RESEARCH ARTICLE

Entropy majorization, thermal adiabatic theorem, and quantum phase transitions

Author information +
History +
PDF (265KB)

Abstract

Let a general quantum many-body system at a low temperature adiabatically cross through the vicinity of the system’s quantum critical point. We show that the system’s temperature is significantly suppressed due to both the entropy majorization theorem in quantum information science and the entropy conservation law in reversible adiabatic processes. We take the one-dimensional transverse-field Ising model and the spinless fermion system as concrete examples to show that the inverse temperature might become divergent around the systems’ critical points. Since the temperature is a measurable quantity in experiments, it can be used, via reversible adiabatic processes at low temperatures, to detect quantum phase transitions in the perspectives of quantum information science and quantum statistical mechanics.

Keywords

quantum phase transition / entropy majorization

Cite this article

Download citation ▾
Shi-jian Gu. Entropy majorization, thermal adiabatic theorem, and quantum phase transitions. Front. Phys., 2012, 7(2): 244-251 DOI:10.1007/s11467-011-0198-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Sachdev, Quantum Phase Transitions, Cambridge: Cambridge University Press, 2000

[2]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000

[3]

L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys., 2008, 80(2): 517

[4]

A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature, 2002, 416(6881): 608

[5]

T. J. Osborne and M. A. NielsenNielsen, Phys. Rev. A, 2002, 66(3): 032110

[6]

P. Zanardi and N. Paunković, Phys. Rev. E, 2006, 74(3): 031123

[7]

H. Q. Zhou and J. P. Barjaktarevic, J. Phys. A, 2008, 41(41): 412001

[8]

W. L. You, Y. W. Li, and S. J. Gu, Phys. Rev. E, 2007, 76(2): 022101

[9]

S. J. Gu, Int. J. Mod. Phys. B, 2010, 24: 4371

[10]

X. Peng, J. Du, and D. Suter, Phys. Rev. A, 2005, 71(1): 012307

[11]

J. Zhang, X. Peng, N. Rajendran, and D. Suter, Phys. Rev. Lett., 2008, 100(10): 100501

[12]

J. Zhang, F. M. Cucchietti, C. M. Chandrashekar, M. Laforest, C. A. Ryan, and M. Ditty, Phys. Rev. A, 2009, 79: 012305

[13]

A. Hubbard, J. K. Gamble, and R. Laamme, Phys. Rev. A, 2009, 79(1): 012305

[14]

M. A. Nielsen, Phys. Rev. Lett., 1999, 83(2): 436

[15]

E. Lieb, D. Mattis, and T. Schultz, Ann. Phys., 1961, 16: 407

[16]

Katsura, Phys. Rev., 1962, 127: 1508

[17]

L. Zhu, M. Garst, A. Rosch, and Q. Si, Phys. Rev. Lett., 2003, 91: 066404

[18]

M. Garst and A. Rosch, Phys. Rev. B, 2005, 72: 205129

[19]

For a review, P. Gegenwart, Q. Si, and F. Steglich, Nat. Phys., 2008, 4(3): 186

[20]

L. Van Hove, Phys. Rev., 1953, 89(6): 1189

[21]

For examples, J. I. Latorre, C. A. Lutken, E. Rico, and G. Vidal, Phys. Rev. A, 2005, 71: 034301

[22]

R. Orüs, Phys. Rev. A, 2005, 71: 052327

[23]

B. C. Arnold, Majorization and the Lorenz Order: A Brief Introduction, Springer-Verlag Lecture Notes in Statistics, 1987, 43

[24]

L. D. Landau and E. M. Lifshitz, Quantum Mechanics, London: Pergamon, 1958

[25]

C. Zener, Proc. R. Soc. A, 1932, 137(833): 696

[26]

N. D. Mermin and H.Wagner, Phys. Rev. Lett., 1966, 17(22): 1133

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (265KB)

1224

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/