Entropy majorization, thermal adiabatic theorem, and quantum phase transitions
Shi-jian Gu
Entropy majorization, thermal adiabatic theorem, and quantum phase transitions
Let a general quantum many-body system at a low temperature adiabatically cross through the vicinity of the system’s quantum critical point. We show that the system’s temperature is significantly suppressed due to both the entropy majorization theorem in quantum information science and the entropy conservation law in reversible adiabatic processes. We take the one-dimensional transverse-field Ising model and the spinless fermion system as concrete examples to show that the inverse temperature might become divergent around the systems’ critical points. Since the temperature is a measurable quantity in experiments, it can be used, via reversible adiabatic processes at low temperatures, to detect quantum phase transitions in the perspectives of quantum information science and quantum statistical mechanics.
quantum phase transition / entropy majorization
[1] |
S. Sachdev, Quantum Phase Transitions, Cambridge: Cambridge University Press, 2000
|
[2] |
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
|
[3] |
L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys., 2008, 80(2): 517
CrossRef
ADS
Google scholar
|
[4] |
A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature, 2002, 416(6881): 608
CrossRef
ADS
Google scholar
|
[5] |
T. J. Osborne and M. A. NielsenNielsen, Phys. Rev. A, 2002, 66(3): 032110
CrossRef
ADS
Google scholar
|
[6] |
P. Zanardi and N. Paunković, Phys. Rev. E, 2006, 74(3): 031123
CrossRef
ADS
Google scholar
|
[7] |
H. Q. Zhou and J. P. Barjaktarevic, J. Phys. A, 2008, 41(41): 412001
CrossRef
ADS
Google scholar
|
[8] |
W. L. You, Y. W. Li, and S. J. Gu, Phys. Rev. E, 2007, 76(2): 022101
CrossRef
ADS
Google scholar
|
[9] |
S. J. Gu, Int. J. Mod. Phys. B, 2010, 24: 4371
CrossRef
ADS
Google scholar
|
[10] |
X. Peng, J. Du, and D. Suter, Phys. Rev. A, 2005, 71(1): 012307
CrossRef
ADS
Google scholar
|
[11] |
J. Zhang, X. Peng, N. Rajendran, and D. Suter, Phys. Rev. Lett., 2008, 100(10): 100501
CrossRef
ADS
Google scholar
|
[12] |
J. Zhang, F. M. Cucchietti, C. M. Chandrashekar, M. Laforest, C. A. Ryan, and M. Ditty, Phys. Rev. A, 2009, 79: 012305
CrossRef
ADS
Google scholar
|
[13] |
A. Hubbard, J. K. Gamble, and R. Laamme, Phys. Rev. A, 2009, 79(1): 012305
CrossRef
ADS
Google scholar
|
[14] |
M. A. Nielsen, Phys. Rev. Lett., 1999, 83(2): 436
CrossRef
ADS
Google scholar
|
[15] |
E. Lieb, D. Mattis, and T. Schultz, Ann. Phys., 1961, 16: 407
CrossRef
ADS
Google scholar
|
[16] |
Katsura, Phys. Rev., 1962, 127: 1508
CrossRef
ADS
Google scholar
|
[17] |
L. Zhu, M. Garst, A. Rosch, and Q. Si, Phys. Rev. Lett., 2003, 91: 066404
CrossRef
ADS
Google scholar
|
[18] |
M. Garst and A. Rosch, Phys. Rev. B, 2005, 72: 205129
CrossRef
ADS
Google scholar
|
[19] |
For a review, P. Gegenwart, Q. Si, and F. Steglich, Nat. Phys., 2008, 4(3): 186
|
[20] |
L. Van Hove, Phys. Rev., 1953, 89(6): 1189
CrossRef
ADS
Google scholar
|
[21] |
For examples, J. I. Latorre, C. A. Lutken, E. Rico, and G. Vidal, Phys. Rev. A, 2005, 71: 034301
|
[22] |
R. Orüs, Phys. Rev. A, 2005, 71: 052327
CrossRef
ADS
Google scholar
|
[23] |
B. C. Arnold, Majorization and the Lorenz Order: A Brief Introduction, Springer-Verlag Lecture Notes in Statistics, 1987, 43
|
[24] |
L. D. Landau and E. M. Lifshitz, Quantum Mechanics, London: Pergamon, 1958
|
[25] |
C. Zener, Proc. R. Soc. A, 1932, 137(833): 696
CrossRef
ADS
Google scholar
|
[26] |
N. D. Mermin and H.Wagner, Phys. Rev. Lett., 1966, 17(22): 1133
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |