Entropy majorization, thermal adiabatic theorem, and quantum phase transitions

Shi-jian Gu

PDF(265 KB)
PDF(265 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (2) : 244-251. DOI: 10.1007/s11467-011-0198-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Entropy majorization, thermal adiabatic theorem, and quantum phase transitions

Author information +
History +

Abstract

Let a general quantum many-body system at a low temperature adiabatically cross through the vicinity of the system’s quantum critical point. We show that the system’s temperature is significantly suppressed due to both the entropy majorization theorem in quantum information science and the entropy conservation law in reversible adiabatic processes. We take the one-dimensional transverse-field Ising model and the spinless fermion system as concrete examples to show that the inverse temperature might become divergent around the systems’ critical points. Since the temperature is a measurable quantity in experiments, it can be used, via reversible adiabatic processes at low temperatures, to detect quantum phase transitions in the perspectives of quantum information science and quantum statistical mechanics.

Keywords

quantum phase transition / entropy majorization

Cite this article

Download citation ▾
Shi-jian Gu. Entropy majorization, thermal adiabatic theorem, and quantum phase transitions. Front. Phys., 2012, 7(2): 244‒251 https://doi.org/10.1007/s11467-011-0198-8

References

[1]
S. Sachdev, Quantum Phase Transitions, Cambridge: Cambridge University Press, 2000
[2]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
[3]
L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys., 2008, 80(2): 517
CrossRef ADS Google scholar
[4]
A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature, 2002, 416(6881): 608
CrossRef ADS Google scholar
[5]
T. J. Osborne and M. A. NielsenNielsen, Phys. Rev. A, 2002, 66(3): 032110
CrossRef ADS Google scholar
[6]
P. Zanardi and N. Paunković, Phys. Rev. E, 2006, 74(3): 031123
CrossRef ADS Google scholar
[7]
H. Q. Zhou and J. P. Barjaktarevic, J. Phys. A, 2008, 41(41): 412001
CrossRef ADS Google scholar
[8]
W. L. You, Y. W. Li, and S. J. Gu, Phys. Rev. E, 2007, 76(2): 022101
CrossRef ADS Google scholar
[9]
S. J. Gu, Int. J. Mod. Phys. B, 2010, 24: 4371
CrossRef ADS Google scholar
[10]
X. Peng, J. Du, and D. Suter, Phys. Rev. A, 2005, 71(1): 012307
CrossRef ADS Google scholar
[11]
J. Zhang, X. Peng, N. Rajendran, and D. Suter, Phys. Rev. Lett., 2008, 100(10): 100501
CrossRef ADS Google scholar
[12]
J. Zhang, F. M. Cucchietti, C. M. Chandrashekar, M. Laforest, C. A. Ryan, and M. Ditty, Phys. Rev. A, 2009, 79: 012305
CrossRef ADS Google scholar
[13]
A. Hubbard, J. K. Gamble, and R. Laamme, Phys. Rev. A, 2009, 79(1): 012305
CrossRef ADS Google scholar
[14]
M. A. Nielsen, Phys. Rev. Lett., 1999, 83(2): 436
CrossRef ADS Google scholar
[15]
E. Lieb, D. Mattis, and T. Schultz, Ann. Phys., 1961, 16: 407
CrossRef ADS Google scholar
[16]
Katsura, Phys. Rev., 1962, 127: 1508
CrossRef ADS Google scholar
[17]
L. Zhu, M. Garst, A. Rosch, and Q. Si, Phys. Rev. Lett., 2003, 91: 066404
CrossRef ADS Google scholar
[18]
M. Garst and A. Rosch, Phys. Rev. B, 2005, 72: 205129
CrossRef ADS Google scholar
[19]
For a review, P. Gegenwart, Q. Si, and F. Steglich, Nat. Phys., 2008, 4(3): 186
[20]
L. Van Hove, Phys. Rev., 1953, 89(6): 1189
CrossRef ADS Google scholar
[21]
For examples, J. I. Latorre, C. A. Lutken, E. Rico, and G. Vidal, Phys. Rev. A, 2005, 71: 034301
[22]
R. Orüs, Phys. Rev. A, 2005, 71: 052327
CrossRef ADS Google scholar
[23]
B. C. Arnold, Majorization and the Lorenz Order: A Brief Introduction, Springer-Verlag Lecture Notes in Statistics, 1987, 43
[24]
L. D. Landau and E. M. Lifshitz, Quantum Mechanics, London: Pergamon, 1958
[25]
C. Zener, Proc. R. Soc. A, 1932, 137(833): 696
CrossRef ADS Google scholar
[26]
N. D. Mermin and H.Wagner, Phys. Rev. Lett., 1966, 17(22): 1133
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(265 KB)

Accesses

Citations

Detail

Sections
Recommended

/