Tuning the Fermi level in Bi2Se3 bulk materials and transport devices

Zhi-yong Wang, Peng Wei, Jing Shi

PDF(328 KB)
PDF(328 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (2) : 160-164. DOI: 10.1007/s11467-011-0196-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Tuning the Fermi level in Bi2Se3 bulk materials and transport devices

Author information +
History +

Abstract

Bi2Se3 has been predicted to be a three-dimensional (3D) topological insulator (TI) with Dirac fermions residing on the two-dimensional (2D) surface. Unique transport properties such as high carrier mobility due to the suppressed backscattering are expected for the Dirac fermions. In order to eliminate the contribution of the bulk carriers, therefore, to place the Fermi level in the band gap of Bi2Se3, we first introduce various amounts of Ca dopants into the crystal to realize the bulk insulating state. Then by avoiding uncontrolled heating and electron beam irradiation in the nanofabrication process, we maintain the insulating state in thin devices. By sweeping the gate voltage, we have observed a conductivity minimum that is expected for the Dirac fermions in the band gap of 3D TIs.

Keywords

topological insulators / Bi2Se3 / transport properties / nano-devices

Cite this article

Download citation ▾
Zhi-yong Wang, Peng Wei, Jing Shi. Tuning the Fermi level in Bi2Se3 bulk materials and transport devices. Front. Phys., 2012, 7(2): 160‒164 https://doi.org/10.1007/s11467-011-0196-x

References

[1]
H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys., 2009, 5(6): 438
CrossRef ADS Google scholar
[2]
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys., 2009, 5(6): 398
CrossRef ADS Google scholar
[3]
Y. L. Chen, J. H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H. H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science, 2010, 329(5992): 659
CrossRef ADS Google scholar
[4]
P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Nature, 2009, 460(7259): 1106
CrossRef ADS Google scholar
[5]
Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phys. Rev. B, 2009, 79(19): 195208
CrossRef ADS Google scholar
[6]
J. G. Analytis, J. H. Chu, Y. L. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and I. R. Fisher, Phys. Rev. B, 2010, 81(20): 205407
CrossRef ADS Google scholar
[7]
D. X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Science, 2010, 329: 821
CrossRef ADS Google scholar
[8]
Z. Wang, T. Lin, P. Wei, X. Liu, R. Dumas, K. Liu, and J. Shi, Appl. Phys. Lett., 2010, 97(4): 042112
CrossRef ADS Google scholar
[9]
J. G. Analytis, R. D. McDonald, S. C. Riggs, J. H. Chu, G. S. Boebinger, and I. R. Fisher, Nat. Phys., 2010, 6(12): 960
CrossRef ADS Google scholar
[10]
H. Köhler and A. Fabricius, Phys. Status Solidi (b), 1975, 71(2): 487
CrossRef ADS Google scholar
[11]
H. Köhler, Phys. Status Solidi (b), 1973, 58(1): 91
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(328 KB)

Accesses

Citations

Detail

Sections
Recommended

/