Mechanical properties of bcc Fe–Cr alloys by first-principles simulations

Xiao-qing Li (李晓庆) , Ji-jun Zhao (赵纪军) , Jing-cheng Xu (徐京城)

Front. Phys. ›› 2012, Vol. 7 ›› Issue (3) : 360 -365.

PDF (393KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (3) : 360 -365. DOI: 10.1007/s11467-011-0193-0
RESEARCH ARTICLE

Mechanical properties of bcc Fe–Cr alloys by first-principles simulations

Author information +
History +
PDF (393KB)

Abstract

The effect of chromium content on the fundamental mechanical properties of Fe–Cr alloys has been studied by first-principles calculations. Within a random solid solution model, the lattice constants and the elastic constants of ferromagnetic bcc Fe1-xCrx (0≤x≤0.156) alloys were calculated for different compositions. With addition of Cr content, the lattice parameters of Fe–Cr alloys are larger than that of pure Fe solid, and the corresponding Young’s modulus and shear modulus rise nonmonotonically with the increasing Cr content. All alloys (except 9.4 at% Cr) exhibit less ductile behavior compared with pure bcc Fe. For the Fe1-xCrx (0≤x≤0.156) alloys, the average magnetic moment per atom decreases linearly with the increasing Cr concentration.

Keywords

Fe–Cr alloys / mechanical properties / lattice constant / magnetic moment

Cite this article

Download citation ▾
Xiao-qing Li (李晓庆), Ji-jun Zhao (赵纪军), Jing-cheng Xu (徐京城). Mechanical properties of bcc Fe–Cr alloys by first-principles simulations. Front. Phys., 2012, 7(3): 360-365 DOI:10.1007/s11467-011-0193-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette, B. van der Schaaf, and M. Victoria, J. Nucl. Mater., 2002, 307-311: 455

[2]

A. Kohyama, A. Hishinuma, D. S. Gelles, R. L. Klueh, W. Dietz, and K. Ehrlich, J. Nucl. Mater., 1996, 233-237: 138

[3]

T. Muroga, M. Gasparotto, and S. J. Zinkle, Fusion Eng. Des., 2002, 61-62: 13

[4]

A. A. F. Tavassoli, J. Nucl. Mater., 2002, 302(2-3): 73

[5]

B. van der Schaaf, D. S. Gelles, S. Jitsukawa, A. Kimura, R. L. Klueh, A. Moslang, and G. R. Odette, J. Nucl. Mater., 2000, 283-287: 52

[6]

F. A. Garner, D. S. Gelles, and F. W. Wiffen, eds., TMSAIME, 1985

[7]

A. F. Rowcliffe, J. P. Robertson, R. L. Klueh, K. Shiba, D. J. Alexander, M. L. Grossbeck, and S. Jitsukawa, J. Nucl. Mater., 1998, 258(263): 1275

[8]

A. Kohyama, Y. Kohno, K. Satoh, and N. Igata, J. Nucl. Mater., 1984, 122(1-3): 619

[9]

S. Jitsukawa, M. Tamura, B. van der Schaaf, R. L. Klueh, A. Alamo, C. Petersen, M. Schirra, P. Spaetig, G. R. Odette, A. A. Tavassoli, K. Shiba, A. Kohyama, and A. Kimura, J. Nucl. Mater., 2002, 307-311: 179

[10]

T. Hasegawa, Y. Tomita, and A. Kohyama, J. Nucl. Mater., 1998, 258(263): 1153

[11]

R. L. Klueh, D. J. Alexander, and M. Rieth, J. Nucl. Mater., 1999, 273(2): 146

[12]

Q. Y. Huang, J. G. Li, and Y. X. Chen, J. Nucl. Mater., 2004, 329-333: 268

[13]

V. Krsjak,W. Egger, M. Petriska, and S. Sojak, Probl. Atom. Sci. Tech., 2009, 109.

[14]

R. L. Klueh, D. J. Alexander, and E. A. Kenik, J. Nucl. Mater., 1995, 227(1-2): 11

[15]

Z. Lu, R. G. Faulkner, G. Was, and B. D. Wirth, Scripta Materialia, 2008, 58(10): 878

[16]

M. I. Luppo, C. Bailat, R. Schaublin, and M. Victoria, J. Nucl. Mater., 2000, 283-287: 483

[17]

R. H. Jones, H. L. Heinisch, and K. A. McCarthy, J. Nucl. Mater., 1999, 271-272: 518

[18]

D. S. Gelles, J. Nucl. Mater., 1995, 225: 163

[19]

S. I. Porollo, A. M. Dvoriashin, A. N. Vorobyev, and Y. V. Konobeev, J. Nucl. Mater., 1998, 256(2-3): 247

[20]

G. R. Speich, A. J. Schwoeble, and W.C. Leslie, Metall. Trans., 1972, 3(8): 2031

[21]

G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59(3): 1758

[22]

P. E. Blöchl, Phys. Rev. B, 1994, 50(24): 17953

[23]

G. Kresse and J. Furthmuller, Phys. Rev. B, 1996, 54(16): 11169

[24]

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B, 1992, 46(11): 6671

[25]

D. C. Wallace, Solid State Physics, New York: Academic, 1970

[26]

J. J. Zhao, J. M. Winey, and Y. M. Gupta, Phys. Rev. B, 2007, 75(9): 094105

[27]

L. Vočdlo, G. A. de Wijs, G. Kresse, M. Gillan, and G. D. Price, Faraday Discuss., 1997, 106: 205

[28]

X. W. Sha and R. E. Cohen, Phys. Rev. B, 2006, 74(21): 214111

[29]

J. A. Rayne and B. S. Chandrasekhar, Phys. Rev., 1961, 122(6): 1714

[30]

L. Vitos, Computational Quantum Mechanics for Materials Engineers, London: Springer-Verlag, 2007

[31]

M. Ropo, K. Kokko, and L. Vitos, Phys. Rev. B, 2008, 77(19): 195445

[32]

W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Belfast: Pergamon, 1958

[33]

H. L. Zhang, B. Johansson, and L. Vitos, Phys. Rev. B, 2009, 79(22): 224201

[34]

P. A. Korzhavyi, A. V. Ruban, J. Odqvist, J. O. Nilsson, and B. Johansson, Phys. Rev. B, 2009, 79(5): 054202

[35]

S. F. Pugh, Philos. Mag., 1954, 45: 823

[36]

D. G. Pettifor, Mater. Sci. Technol., 1992, 8: 345

[37]

C. Kittel, Introduction to Solid State Physics, New York: Wiley, 1996

[38]

A. T. Aldred, Phys. Rev. B, 1976, 14(1): 219

[39]

C. Paduani and J. C. Krause, Braz. J. Phys., 2006, 36(4a): 1262

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (393KB)

1544

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/