Mechanical properties of bcc Fe–Cr alloys by first-principles simulations
, ,
Mechanical properties of bcc Fe–Cr alloys by first-principles simulations
The effect of chromium content on the fundamental mechanical properties of Fe–Cr alloys has been studied by first-principles calculations. Within a random solid solution model, the lattice constants and the elastic constants of ferromagnetic bcc Fe1-xCrx (0≤x≤0.156) alloys were calculated for different compositions. With addition of Cr content, the lattice parameters of Fe–Cr alloys are larger than that of pure Fe solid, and the corresponding Young’s modulus and shear modulus rise nonmonotonically with the increasing Cr content. All alloys (except 9.4 at% Cr) exhibit less ductile behavior compared with pure bcc Fe. For the Fe1-xCrx (0≤x≤0.156) alloys, the average magnetic moment per atom decreases linearly with the increasing Cr concentration.
Fe–Cr alloys / mechanical properties / lattice constant / magnetic moment
[1] |
R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette, B. van der Schaaf, and M. Victoria, J. Nucl. Mater., 2002, 307-311: 455
CrossRef
ADS
Google scholar
|
[2] |
A. Kohyama, A. Hishinuma, D. S. Gelles, R. L. Klueh, W. Dietz, and K. Ehrlich, J. Nucl. Mater., 1996, 233-237: 138
CrossRef
ADS
Google scholar
|
[3] |
T. Muroga, M. Gasparotto, and S. J. Zinkle, Fusion Eng. Des., 2002, 61-62: 13
CrossRef
ADS
Google scholar
|
[4] |
A. A. F. Tavassoli, J. Nucl. Mater., 2002, 302(2-3): 73
CrossRef
ADS
Google scholar
|
[5] |
B. van der Schaaf, D. S. Gelles, S. Jitsukawa, A. Kimura, R. L. Klueh, A. Moslang, and G. R. Odette, J. Nucl. Mater., 2000, 283-287: 52
CrossRef
ADS
Google scholar
|
[6] |
F. A. Garner, D. S. Gelles, and F. W. Wiffen, eds., TMSAIME, 1985
|
[7] |
A. F. Rowcliffe, J. P. Robertson, R. L. Klueh, K. Shiba, D. J. Alexander, M. L. Grossbeck, and S. Jitsukawa, J. Nucl. Mater., 1998, 258(263): 1275
CrossRef
ADS
Google scholar
|
[8] |
A. Kohyama, Y. Kohno, K. Satoh, and N. Igata, J. Nucl. Mater., 1984, 122(1-3): 619
CrossRef
ADS
Google scholar
|
[9] |
S. Jitsukawa, M. Tamura, B. van der Schaaf, R. L. Klueh, A. Alamo, C. Petersen, M. Schirra, P. Spaetig, G. R. Odette, A. A. Tavassoli, K. Shiba, A. Kohyama, and A. Kimura, J. Nucl. Mater., 2002, 307-311: 179
CrossRef
ADS
Google scholar
|
[10] |
T. Hasegawa, Y. Tomita, and A. Kohyama, J. Nucl. Mater., 1998, 258(263): 1153
CrossRef
ADS
Google scholar
|
[11] |
R. L. Klueh, D. J. Alexander, and M. Rieth, J. Nucl. Mater., 1999, 273(2): 146
CrossRef
ADS
Google scholar
|
[12] |
Q. Y. Huang, J. G. Li, and Y. X. Chen, J. Nucl. Mater., 2004, 329-333: 268
CrossRef
ADS
Google scholar
|
[13] |
V. Krsjak,W. Egger, M. Petriska, and S. Sojak, Probl. Atom. Sci. Tech., 2009, 109.
|
[14] |
R. L. Klueh, D. J. Alexander, and E. A. Kenik, J. Nucl. Mater., 1995, 227(1-2): 11
CrossRef
ADS
Google scholar
|
[15] |
Z. Lu, R. G. Faulkner, G. Was, and B. D. Wirth, Scripta Materialia, 2008, 58(10): 878
CrossRef
ADS
Google scholar
|
[16] |
M. I. Luppo, C. Bailat, R. Schaublin, and M. Victoria, J. Nucl. Mater., 2000, 283-287: 483
CrossRef
ADS
Google scholar
|
[17] |
R. H. Jones, H. L. Heinisch, and K. A. McCarthy, J. Nucl. Mater., 1999, 271-272: 518
CrossRef
ADS
Google scholar
|
[18] |
D. S. Gelles, J. Nucl. Mater., 1995, 225: 163
CrossRef
ADS
Google scholar
|
[19] |
S. I. Porollo, A. M. Dvoriashin, A. N. Vorobyev, and Y. V. Konobeev, J. Nucl. Mater., 1998, 256(2-3): 247
CrossRef
ADS
Google scholar
|
[20] |
G. R. Speich, A. J. Schwoeble, and W.C. Leslie, Metall. Trans., 1972, 3(8): 2031
CrossRef
ADS
Google scholar
|
[21] |
G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59(3): 1758
CrossRef
ADS
Google scholar
|
[22] |
P. E. Blöchl, Phys. Rev. B, 1994, 50(24): 17953
CrossRef
ADS
Google scholar
|
[23] |
G. Kresse and J. Furthmuller, Phys. Rev. B, 1996, 54(16): 11169
CrossRef
ADS
Google scholar
|
[24] |
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B, 1992, 46(11): 6671
CrossRef
ADS
Google scholar
|
[25] |
D. C. Wallace, Solid State Physics, New York: Academic, 1970
|
[26] |
J. J. Zhao, J. M. Winey, and Y. M. Gupta, Phys. Rev. B, 2007, 75(9): 094105
CrossRef
ADS
Google scholar
|
[27] |
L. Vočdlo, G. A. de Wijs, G. Kresse, M. Gillan, and G. D. Price, Faraday Discuss., 1997, 106: 205
CrossRef
ADS
Google scholar
|
[28] |
X. W. Sha and R. E. Cohen, Phys. Rev. B, 2006, 74(21): 214111
CrossRef
ADS
Google scholar
|
[29] |
J. A. Rayne and B. S. Chandrasekhar, Phys. Rev., 1961, 122(6): 1714
CrossRef
ADS
Google scholar
|
[30] |
L. Vitos, Computational Quantum Mechanics for Materials Engineers, London: Springer-Verlag, 2007
|
[31] |
M. Ropo, K. Kokko, and L. Vitos, Phys. Rev. B, 2008, 77(19): 195445
CrossRef
ADS
Google scholar
|
[32] |
W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Belfast: Pergamon, 1958
|
[33] |
H. L. Zhang, B. Johansson, and L. Vitos, Phys. Rev. B, 2009, 79(22): 224201
CrossRef
ADS
Google scholar
|
[34] |
P. A. Korzhavyi, A. V. Ruban, J. Odqvist, J. O. Nilsson, and B. Johansson, Phys. Rev. B, 2009, 79(5): 054202
CrossRef
ADS
Google scholar
|
[35] |
S. F. Pugh, Philos. Mag., 1954, 45: 823
|
[36] |
D. G. Pettifor, Mater. Sci. Technol., 1992, 8: 345
CrossRef
ADS
Google scholar
|
[37] |
C. Kittel, Introduction to Solid State Physics, New York: Wiley, 1996
|
[38] |
A. T. Aldred, Phys. Rev. B, 1976, 14(1): 219
CrossRef
ADS
Google scholar
|
[39] |
C. Paduani and J. C. Krause, Braz. J. Phys., 2006, 36(4a): 1262
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |