Mechanical properties of bcc Fe–Cr alloys by first-principles simulations

, ,

PDF(393 KB)
PDF(393 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (3) : 360-365. DOI: 10.1007/s11467-011-0193-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Mechanical properties of bcc Fe–Cr alloys by first-principles simulations

  • 1,2
  • 1,2
  • 1,2
Author information +
History +

Abstract

The effect of chromium content on the fundamental mechanical properties of Fe–Cr alloys has been studied by first-principles calculations. Within a random solid solution model, the lattice constants and the elastic constants of ferromagnetic bcc Fe1-xCrx (0≤x≤0.156) alloys were calculated for different compositions. With addition of Cr content, the lattice parameters of Fe–Cr alloys are larger than that of pure Fe solid, and the corresponding Young’s modulus and shear modulus rise nonmonotonically with the increasing Cr content. All alloys (except 9.4 at% Cr) exhibit less ductile behavior compared with pure bcc Fe. For the Fe1-xCrx (0≤x≤0.156) alloys, the average magnetic moment per atom decreases linearly with the increasing Cr concentration.

Keywords

Fe–Cr alloys / mechanical properties / lattice constant / magnetic moment

Cite this article

Download citation ▾
, , . Mechanical properties of bcc Fe–Cr alloys by first-principles simulations. Front. Phys., 2012, 7(3): 360‒365 https://doi.org/10.1007/s11467-011-0193-0

References

[1]
R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette, B. van der Schaaf, and M. Victoria, J. Nucl. Mater., 2002, 307-311: 455
CrossRef ADS Google scholar
[2]
A. Kohyama, A. Hishinuma, D. S. Gelles, R. L. Klueh, W. Dietz, and K. Ehrlich, J. Nucl. Mater., 1996, 233-237: 138
CrossRef ADS Google scholar
[3]
T. Muroga, M. Gasparotto, and S. J. Zinkle, Fusion Eng. Des., 2002, 61-62: 13
CrossRef ADS Google scholar
[4]
A. A. F. Tavassoli, J. Nucl. Mater., 2002, 302(2-3): 73
CrossRef ADS Google scholar
[5]
B. van der Schaaf, D. S. Gelles, S. Jitsukawa, A. Kimura, R. L. Klueh, A. Moslang, and G. R. Odette, J. Nucl. Mater., 2000, 283-287: 52
CrossRef ADS Google scholar
[6]
F. A. Garner, D. S. Gelles, and F. W. Wiffen, eds., TMSAIME, 1985
[7]
A. F. Rowcliffe, J. P. Robertson, R. L. Klueh, K. Shiba, D. J. Alexander, M. L. Grossbeck, and S. Jitsukawa, J. Nucl. Mater., 1998, 258(263): 1275
CrossRef ADS Google scholar
[8]
A. Kohyama, Y. Kohno, K. Satoh, and N. Igata, J. Nucl. Mater., 1984, 122(1-3): 619
CrossRef ADS Google scholar
[9]
S. Jitsukawa, M. Tamura, B. van der Schaaf, R. L. Klueh, A. Alamo, C. Petersen, M. Schirra, P. Spaetig, G. R. Odette, A. A. Tavassoli, K. Shiba, A. Kohyama, and A. Kimura, J. Nucl. Mater., 2002, 307-311: 179
CrossRef ADS Google scholar
[10]
T. Hasegawa, Y. Tomita, and A. Kohyama, J. Nucl. Mater., 1998, 258(263): 1153
CrossRef ADS Google scholar
[11]
R. L. Klueh, D. J. Alexander, and M. Rieth, J. Nucl. Mater., 1999, 273(2): 146
CrossRef ADS Google scholar
[12]
Q. Y. Huang, J. G. Li, and Y. X. Chen, J. Nucl. Mater., 2004, 329-333: 268
CrossRef ADS Google scholar
[13]
V. Krsjak,W. Egger, M. Petriska, and S. Sojak, Probl. Atom. Sci. Tech., 2009, 109.
[14]
R. L. Klueh, D. J. Alexander, and E. A. Kenik, J. Nucl. Mater., 1995, 227(1-2): 11
CrossRef ADS Google scholar
[15]
Z. Lu, R. G. Faulkner, G. Was, and B. D. Wirth, Scripta Materialia, 2008, 58(10): 878
CrossRef ADS Google scholar
[16]
M. I. Luppo, C. Bailat, R. Schaublin, and M. Victoria, J. Nucl. Mater., 2000, 283-287: 483
CrossRef ADS Google scholar
[17]
R. H. Jones, H. L. Heinisch, and K. A. McCarthy, J. Nucl. Mater., 1999, 271-272: 518
CrossRef ADS Google scholar
[18]
D. S. Gelles, J. Nucl. Mater., 1995, 225: 163
CrossRef ADS Google scholar
[19]
S. I. Porollo, A. M. Dvoriashin, A. N. Vorobyev, and Y. V. Konobeev, J. Nucl. Mater., 1998, 256(2-3): 247
CrossRef ADS Google scholar
[20]
G. R. Speich, A. J. Schwoeble, and W.C. Leslie, Metall. Trans., 1972, 3(8): 2031
CrossRef ADS Google scholar
[21]
G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59(3): 1758
CrossRef ADS Google scholar
[22]
P. E. Blöchl, Phys. Rev. B, 1994, 50(24): 17953
CrossRef ADS Google scholar
[23]
G. Kresse and J. Furthmuller, Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[24]
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B, 1992, 46(11): 6671
CrossRef ADS Google scholar
[25]
D. C. Wallace, Solid State Physics, New York: Academic, 1970
[26]
J. J. Zhao, J. M. Winey, and Y. M. Gupta, Phys. Rev. B, 2007, 75(9): 094105
CrossRef ADS Google scholar
[27]
L. Vočdlo, G. A. de Wijs, G. Kresse, M. Gillan, and G. D. Price, Faraday Discuss., 1997, 106: 205
CrossRef ADS Google scholar
[28]
X. W. Sha and R. E. Cohen, Phys. Rev. B, 2006, 74(21): 214111
CrossRef ADS Google scholar
[29]
J. A. Rayne and B. S. Chandrasekhar, Phys. Rev., 1961, 122(6): 1714
CrossRef ADS Google scholar
[30]
L. Vitos, Computational Quantum Mechanics for Materials Engineers, London: Springer-Verlag, 2007
[31]
M. Ropo, K. Kokko, and L. Vitos, Phys. Rev. B, 2008, 77(19): 195445
CrossRef ADS Google scholar
[32]
W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Belfast: Pergamon, 1958
[33]
H. L. Zhang, B. Johansson, and L. Vitos, Phys. Rev. B, 2009, 79(22): 224201
CrossRef ADS Google scholar
[34]
P. A. Korzhavyi, A. V. Ruban, J. Odqvist, J. O. Nilsson, and B. Johansson, Phys. Rev. B, 2009, 79(5): 054202
CrossRef ADS Google scholar
[35]
S. F. Pugh, Philos. Mag., 1954, 45: 823
[36]
D. G. Pettifor, Mater. Sci. Technol., 1992, 8: 345
CrossRef ADS Google scholar
[37]
C. Kittel, Introduction to Solid State Physics, New York: Wiley, 1996
[38]
A. T. Aldred, Phys. Rev. B, 1976, 14(1): 219
CrossRef ADS Google scholar
[39]
C. Paduani and J. C. Krause, Braz. J. Phys., 2006, 36(4a): 1262
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(393 KB)

Accesses

Citations

Detail

Sections
Recommended

/