Mechanical properties of bcc Fe–Cr alloys by first-principles simulations
Xiao-qing Li (李晓庆) , Ji-jun Zhao (赵纪军) , Jing-cheng Xu (徐京城)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (3) : 360 -365.
Mechanical properties of bcc Fe–Cr alloys by first-principles simulations
The effect of chromium content on the fundamental mechanical properties of Fe–Cr alloys has been studied by first-principles calculations. Within a random solid solution model, the lattice constants and the elastic constants of ferromagnetic bcc Fe1-xCrx (0≤x≤0.156) alloys were calculated for different compositions. With addition of Cr content, the lattice parameters of Fe–Cr alloys are larger than that of pure Fe solid, and the corresponding Young’s modulus and shear modulus rise nonmonotonically with the increasing Cr content. All alloys (except 9.4 at% Cr) exhibit less ductile behavior compared with pure bcc Fe. For the Fe1-xCrx (0≤x≤0.156) alloys, the average magnetic moment per atom decreases linearly with the increasing Cr concentration.
Fe–Cr alloys / mechanical properties / lattice constant / magnetic moment
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |