
Recent progress of computational investigation on anode materials in Li ion batteries
Di-hua WU (吴迪华), Zhen ZHOU (周震)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (2) : 197-203.
Recent progress of computational investigation on anode materials in Li ion batteries
Computations have been widely used to explore new Li ion battery materials because of its remarkable advantages. In this review, we summarize the recent progress on computational investigation on anode materials in Li ion batteries. By introducing the computational studies on Li storage capability in carbon nanotubes, graphene, alloys and oxides, we reveal that computations have successfully addressed many fundamental problems and are powerful tools to understand and design new anode materials for Li ion batteries.
Li ion batteries / anode / carbon nanotubes / graphene / computation
Fig.1 (a) Schematic diagram of Ag/STO/Pt device structure. (b) Icc = 1 × 10−6 A, I−V test shows volatile threshold RS characteristics. (c) Icc = 1 × 10−3 A, I−V test shows nonvolatile bipolar RS characteristics. (d, g) The resistance state distribution of the device over 100 I−V cycles at the volatile threshold RS and nonvolatile bipolar RS. (e, f) Threshold and hold voltage distribution statistics. (h, i) Set and reset voltage distribution statistics. |
Fig.2 The transition from volatile to nonvolatile at Ag/STO/Pt device. (a, b) Relaxation characteristic of using 2 V and 3 V stimulation pulses. (c, d) Retention characteristic of using 4 V and 5 V stimulation pulses. In (a)−(d), the reading pulse with the amplitude of 0.6 V is used, and the pulse durations of both the reading pulses and stimulation pulses are 100 μs, The time intervals between the two are 0, 200, 400, and 600 μs. |
Fig.3 Change of device TFIRE. (a) The interval and amplitude remain unchanged; the NFIRE changes with different pulse durations. (b) The pulse duration and amplitude remain unchanged; the NFIRE changes at different intervals. (c) The pulse duration and interval remain unchanged; the NFIRE changes with different amplitudes. |
Fig.4 (a) LIF neuron circuit model is realized based on Ag/STO/Pt device. (b) Input pulses with different amplitudes, LGP, and circuit output response. (c) Response of artificial neuron circuit under input pulses of different voltages. (d) Response of artificial neuron circuit under input pulses of different frequencies. |
Fig.5 The device simulates the changes in synaptic weights. (a−c) Influence of positive pulses of different amplitudes, durations, and intervals of 30 cycles on conductance modulation. (d) Schematic diagram of synaptic structure. (e) By changing Δt, realize the STDP function. (f) By changing Δt, realize the PPF function. |
[1] |
M. K.Aydinol, A. F.Kohan, G.Ceder, K.Cho, and J.Joannopoulos, Phys. Rev. B, 1997, 56(3): 1354
|
[2] |
K.Kang and G.Ceder, Phys. Rev. B, 2006, 74(9): 094105
|
[3] |
S. Q.Shi, L. J.Liu, C. Y.Ouyang, D. S.Wang, Z. X.Wang, L. Q.Chen, and X. J.Huang, Phys. Rev. B, 2003, 68(19): 195108
|
[4] |
C. Y.Ouyang, S. Q.Shi, Z. X.Wang, X. J.Huang, and L. Q.Chen, Phys. Rev. B, 2004, 69(10): 104303
|
[5] |
S. Q.Shi, C. Y.Ouyang, Z. H.Xiong, L. J.Liu, Z. X.Wang, H.Li, D. S.Wang, L. Q.Chen, and X. J.Huang, Phys. Rev. B, 2005, 71(14): 144404
|
[6] |
J.Reed and G.Ceder, Chem. Rev., 2004, 104(10): 4513
|
[7] |
Y.Mengand M.Dompablo, Energy & Environ. Sci., 2009, 2: 589
|
[8] |
Z.Zhou, T. Y.Yan, and X. P.Gao, Acta Phys.–Chim. Sin., 2006, 22: 1168
|
[9] |
S.Iijima, Nature, 1991, 354(6348): 56
|
[10] |
J. E.Fischer, Chem. Innovation, 2000, 30: 21
|
[11] |
B.Gao, C.Bower, J. D.Lorentzen, L.Fleming, A.Kleinhammes, X. P.Tang, L. E.McNeil, Y.Wu, and O.Zhou, Chem. Phys. Lett., 2000, 327(1-2): 69
|
[12] |
J.Zhao, A.Buldum, J.Han, and J. P.Lu, Phys. Rev. Lett., 2000, 85(8): 1706
|
[13] |
B.Song, J.Yang, J.Zhao, and H.Fang, Energy & Environ. Sci., 2011, 4: 1379
|
[14] |
W.Koh, J.Choi, K.Donaher, S.Lee, and S.Jang, ACS Appl. Mater. Interfaces, 2011,
CrossRef
ADS
Google scholar
|
[15] |
T.Kar, J.Pattanayak, and S.Scheiner, J. Phys. Chem. A, 2001, 105(45): 10397
|
[16] |
H.Shimoda, B.Gao, X. P.Tang, A.Kleinhammes, L.Fleming, Y.Wu, and O.Zhou, Phys. Rev. Lett., 2001, 88(1): 015502
|
[17] |
V.Meunier, J.Kephart, C.Roland, and J.Bernholc, Phys. Rev. Lett., 2002, 88(7): 075506
|
[18] |
C.Garau, A.Frontera, D.Quiñonero, A.Costa, P.Ballester, and P. M.Deyà, Chem. Phys. Lett., 2003, 374(5-6): 548
|
[19] |
C.Garau, A.Frontera, D.Quiñonero, A.Costa, P.Ballester, and P. M.Deyà, Chem. Phys., 2004, 297(1-3): 85
|
[20] |
Z.Zhou, X. P.Gao, J.Yan, D. Y.Song, and M.Morinaga, J. Phys. Chem. B, 2004, 108(26): 9023
|
[21] |
Z.Zhou, X.Gao, J.Yan, D.Song, and M.Morinaga, Carbon, 2004, 42(12-13): 2677
|
[22] |
Z.Zhou, J.Zhao, X.Gao, Z.Chen, J.Yan, P. v. R.Schleyer, and M.Morinaga, Chem. Mater., 2005, 17(5): 992
|
[23] |
J.Zhao, B.Wen, Z.Zhou, Z.Chen, and P. v. R.Schleyer, Chem. Phys. Lett., 2005, 415(4-6): 323
|
[24] |
I.Mukhopadhyay, N.Hoshino, S.Kawasaki, F.Okino, W. K.Hsu, and H.Touhara, J. Electrochem. Soc., 2002, 149(1): A39
|
[25] |
Y. F.Li, Z.Zhou, and L. B.Wang, J. Chem. Phys., 2008, 129(10): 104703
|
[26] |
K. S.Novoselov, A. K.Geim, S. V.Morozov, D.Jiang, Y.Zhang, S. V.Dubonos, I. V.Grigorieva, and A. A.Firsov, Science, 2004, 306(5696): 666
|
[27] |
G. X.Wang, X. P.Shen, J.Yao, and J. Park, Carbon, 2009, 47(8): 2049
|
[28] |
D. Y.Pan, S.Wang, B.Zhao, M. H.Wu, H. J.Zhang, Y.Wang, and Z.Jiao, Chem. Mater., 2009, 21(14): 3136
|
[29] |
E.Yoo, J.Kim, E.Hosono, H. S.Zhou, T.Kudo, and I.Honma, Nano Lett., 2008, 8(8): 2277
|
[30] |
T.Bhardwaj, A.Antic, B.Pavan, V.Barone, and B. D.Fahlman, J. Am. Chem. Soc., 2010, 132(36): 12556
|
[31] |
E.Pollak, B.Geng, K. J.Jeon, I. T.Lucas, T. J.Richardson, F.Wang, and R.Kostecki, Nano Lett., 2010, 10(9): 3386
|
[32] |
M.Khantha, N. A.Cordero, L. M.Molina, J. A.Alonso, and L. A.Girifalco, Phys. Rev. B, 2004, 70(12): 125422
|
[33] |
X. L.Wang, Z.Zeng, H.Ahn, and G. X.Wang, Appl. Phys. Lett., 2009, 95(18): 183103
|
[34] |
C. K.Yang, Appl. Phys. Lett., 2009, 94(16): 163115
|
[35] |
C.Uthaisar and V.Barone, Nano Lett., 2010, 10(8): 2838
|
[36] |
A. L. M.Reddy, A.Srivastava, S. R.Gowda, H.Gullapalli, M.Dubey, and P. M.Ajayan, ACS Nano, 2010, 4: 6337
|
[37] |
L. W.Su, Z.Zhou, and M. M.Ren, Chem. Commun., 2010, 46(15): 2590
|
[38] |
W. J.Zhang, J. Power Sources, 2011, 196(1): 13
|
[39] |
I. A.Courtney, J. S.Tse, O.Mao, J.Hafner, and J. R.Dahn, Phys. Rev. B, 1998, 58(23): 15583
|
[40] |
S.Matsuno, M.Noji, T.Kashiwagi, M.Nakayama, and M.Wakihara, J. Phys. Chem. C, 2007, 111(20): 7548
|
[41] |
V. B.Shenoy, P.Johari, and Y.Qi, J. Power Sources, 2010, 195(19): 6825
|
[42] |
S. Q.Wu, N. L.Cai, Z. Z.Zhu, and Y.Yang, Electrochim. Acta, 2008, 53(27): 7915
|
[43] |
S.Ohara, J.Suzuki, K.Sekine, and T.Takamura, J. Power Sources, 2003, 119-121: 591
|
[44] |
H.Ma, F.Cheng, J. Y.Chen, J. Z.Zhao, C. S.Li, Z. L.Tao, and J.Liang, Adv. Mater., 2007, 19(22): 4067
|
[45] |
C. K.Chan, H.Peng, G.Liu, K.McIlwrath, X. F.Zhang, R. A.Huggins, and Y.Cui, Nat. Nanotechnol., 2008, 3(1): 31
|
[46] |
T. L.Chan and J. R.Chelikowsky, Nano Lett., 2010, 10(3): 821
|
[47] |
Q.Zhang, W.Zhang, W.Wan, Y.Cui, and E.Wang, Nano Lett., 2010, 10(9): 3243
|
[48] |
E.Bekaert, F.Robert, P. E.Lippens, and M.Menetrier, J. Phys. Chem. C, 2010, 114(14): 6749
|
[49] |
T. P.Kumar, R.Ramesh, Y. Y.Lin, and G. T. K.Fey, Electrochem. Commun., 2004, 6: 520
|
[50] |
M. F.Ng, J. W.Zheng, and P.Wu, J. Phys. Chem. C, 2010, 114(18): 8542
|
[51] |
J. W.Zheng, S. M. L.Nai, M. F.Ng, P.Wu, J.Wei, and M.Gupta, J. Phys. Chem. C, 2009, 113(31): 14015
|
[52] |
G.Ceder, Y. M.Chiang, D. R.Sadoway, M. K.Aydinol, Y. I.Jang, and B.Huang, Nature, 1998, 392(6677): 694
|
[53] |
K.Nakahara, R.Nakajima, T.Matsushima, and H.Majima, J. Power Sources, 2003, 117(1-2): 131
|
[54] |
G. X.Wang, D. H.Bradhurst, S. X.Dou, and H. K.Liu, J. Power Sources, 1999, 83(1-2): 156
|
[55] |
K. N.Jung, S. I.Pyun, and S. W.Kim, J. Power Sources, 2003, 119-121: 637
|
[56] |
C. Y.Ouyang, Z. Y.Zhong, and M. S.Lei, Electrochem. Commun., 2007, 9(5): 1107
|
[57] |
Z.Zhong, C.Ouyang, S.Shi, and M.Lei, ChemPhysChem, 2008, 9(14): 2104
|
[58] |
X.Chen and S. S.Mao, Chem. Rev., 2007, 107(7): 2891
|
[59] |
A. R.Armstrong, G.Armstrong, J.Canales, R.García, and P. G.Bruce, Adv. Mater., 2005, 17: 862
|
[60] |
M.Wagemaker, A. P. M.Kentgens, and F. M.Mulder, Nature, 2002, 418(6896): 397
|
[61] |
H.Zhang, G. R.Li, L. P.An, T. Y.Yan, X. P.Gao, and H. Y.Zhu, J. Phys. Chem. C, 2007, 111(16): 6143
|
[62] |
L.Kavan, M.Kalbáč, M.Zukalová, I.Exnar, V.Lorenzen, R.Nesper, and M.Graetzel, Chem. Mater., 2004, 16: 477
|
[63] |
Y. S.Hu, L.Kienle, Y. G.Guo, and J.Maier, Adv. Mater., 2006, 18(11): 1421
|
[64] |
G.Armstrong, A.Armstrong, P. G.Bruce, P.Reale, and B.Scrosati, Adv. Mater., 2006, 18(19): 2597
|
[65] |
M. V.Koudriachova, N. M.Harrison, and S. W.de Leeuw, Phys. Rev. Lett., 2001, 86(7): 1275
|
[66] |
M. V.Koudriachova, S. W.de Leeuw, and N. M.Harrison, Chem. Phys. Lett., 2003, 371(1-2): 150
|
[67] |
M. V.Koudriachova, Chem. Phys. Lett., 2008, 458(1-3): 108
|
[68] |
F.Tielens, M.Calatayud, A.Beltrán, C.Minot, and J.Andrés, J. Electroanal. Chem., 2005, 581(2): 216
|
[69] |
M. V.Koudriachova, N. M.Harrison, and S. W.de Leeuw, Solid State Ion., 2003, 157(1-4): 35
|
[70] |
M. V.Koudriachova, N. M.Harrison, and S. W.de Leeuw, Solid State Ion., 2004, 175(1-4): 829
|
[71] |
P.Poizot, S.Laruelle, S.Grugeon, L.Dupont, and J.-M.Tarascon, Nature, 2000, 407(6803): 496
|
[72] |
M.Armand and J. M.Tarascon, Nature, 2008, 451(7179): 652
|
[73] |
X. P.Gao, J. L.Bao, G. L.Pan, H. Y.Zhu, P. X.Huang, F.Wu, and D. Y.Song, J. Phys. Chem. B, 2004, 108(18): 5547
|
[74] |
S. M.Yuan, J. X.Li, L. T.Yang, L. W.Su, L.Liu, and Z.Zhou, ACS Appl. Mater. Interfaces, 2011, 3(3): 705
|
[75] |
L.Liu, Y.Li, S. M.Yuan, M.Ge, M. M.Ren, C. S.Sun, and Z.Zhou, J. Phys. Chem. C, 2010, 114(1): 251
|
[76] |
K. R.Kganyago and P. E.Ngoepe, Phys. Rev. B, 2003, 68(20): 205111
|
[77] |
G.Henkelman, B. P.Uberuaga, and H.Jonsson, J. Chem. Phys., 2000, 113(22): 9901
|
[78] |
K.Toyoura, Y.Koyama, A.Kuwabara, and I.Tanaka, J. Phys. Chem. C, 2010, 114(5): 2375
|
[79] |
K.Toyoura, Y.Koyama, A.Kuwabara, F.Oba, and I.Tanaka, Phys. Rev. B, 2008, 78(21): 214303
|
[80] |
K.Persson, V. A.Sethuraman, L. J.Hardwick, Y.Hinuma, Y. S.Meng, A.van der Ven, V.Srinivasan, R.Kostecki, and G.Ceder, J. Phys. Chem. Lett., 2010, 1(8): 1176
|
[81] |
K.Leung and J. L.Budzien, Phys. Chem. Chem. Phys., 2010, 12(25): 6583
|
Supplementary files
fop-21308-OF-hanxu_suppl_1 (839 KB)
Part of a collection:
Special Topic: Materials, Mechanisms and Applications of Memristors
/
〈 |
|
〉 |